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Project Description

Project Title
Impact of climate change on the landscape of the dairy sector in Switzerland over the past decades

Description
Climate change, as a consequence of anthropogenic greenhouse gas emissions and global population growth

has become major challenge for humanity. The global increase in temperature and humidity amplifies

local impact on livestock husbandry. Heat stress (HS) is defined as body hyperthermia in mammals due

to excessive heat loads that cannot be sufficiently dissipated. Modern dairy cows are more susceptible to

HS due to higher metabolic activity during lactation compared to other animals.

Based on projected growth in the human population, the global food demand is estimated to increase by

60 to 70% by 2050 (Makkar, 2018), of which the demand for dairy products is greater than 50% compared

to the values of 2010 (McLeod, 2011). Seasonal depression in milk production is mainly attributed to

HS, and thereby increasing global temperatures represent a challenge to meet the growing demand for

dairy products, as higher ambient temperature and humidity reduce the production efficiency of dairy

cows. Climatic conditions around the world vary because animals live in a combination of environmental

factors, including humidity, rainfall, wind speed, and solar radiation (Johnson, 1987). The temperature-

humidity index (THI) was proposed to represent the combined effects of ambient temperature and relative

humidity associated with HS (National Oceanic and Atmospheric Administration, 1976). Heat stress is

considered an acute effect on dairy cows when THI crosses the threshold of 72 (Armstrong, 1994) or 68

(De Rensis et al., 2015).

Heat stress causes significant economic losses to the livestock sector (Key et al., 2014). For example,

estimated losses in the U.S. range from $ 1.7 to 2.4 billion, of which $ 0.9 billion are specific to the dairy

sector (St-Pierre et al., 2003). Even in a temperate climatic region, such as Central Europe, dairy cows

are greatly affected by seasonal exposure to heat (Fabris et al., 2019). Although such financial estimates

are currently not available in Switzerland, our analysis showed reductions in milk yield (MY) and milk fat

and protein contents in Swiss dairy farms during the summer months, translating into significant losses

in dairy food quality, nutrients, and farm sustainability (Fig. A).
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Figure A: Based on a total of 2’090’000 test day records from Swissherdbook, Niu et al., (unpubl.)
analyzed milk fat yield of cows in registered Swiss dairy farms during 6 consecutive years across the
annual cycle.

Hence, our objective is to analyze, with appropriate methods, extreme weather effects on the quantitative

and qualitative aspects of the dairy business in Switzerland with an unprecedented granularity level. The

analysis should be performed on cow- or farm-level datasets. In addition, meteorological data from

MeteoSwiss (MeteoSchweiz, 2024c) allow us to investigate potential relationships between parameters at

the cow level, the farm level, and the HS factors. Ideally, the work will provide valuable insights for the

dairy industry, policy makers, insurances, and other stakeholders in the Swiss dairy value chain.
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Abstract

Climate change is increasingly contributing to higher average temperatures which lead to frequent and

severe heat waves across the globe. These shifts can intensify heat stress in dairy cows and might

adversely affect milk production and component yields. However, the degree of heat tolerance among

dairy cow breeds has not been extensively studied in commercial production settings within Switzerland.

Existing research has largely focused on a limited number of breeds in grassland-based systems outside

of Switzerland. Using a comprehensive dataset comprising over 130 million records from the three major

dairy cow breeding associations in Switzerland, we investigated the effect of weather on milk yield and

energy-corrected milk yield across six dairy cow breeds, providing an unparalleled analysis in terms of

scale and scope.

We employed Generalized Additive Mixed Models (GAMMs) to adequately model the non-linear Temper-

ature Humidity Index (THI) and other variables such as days in milk (DIM). This required us to develop

a modified implementation of gamm4 (R) and MixedModels.jl (Julia) adapted to the sparse structure of

our dataset. With these modifications, we enabled GAMMs to accommodate a larger number of random

effect factor levels than previous implementations in R while enhancing computational efficiency.

Applying this tailored method to our model, we determined the marginal non-linear effects of THI

on the daily milk yield and the daily energy-corrected milk (ECM) yield for both primiparous and

multiparous cows. We retrieved breed-specific THI response curves and peak performance points. Our

results indicated that dairy performance decreased at three-day mean THI values as low as 51 for certain

breeds, which was notably lower than reported in comparable studies. Furthermore, we observed greater

variability in peak THI values for milk yield across breeds compared to ECM yield, suggesting that

high-fat and high-protein-producing breeds such as Jersey experience earlier declines in milk component

yields. Across all scenarios, primiparous cows consistently showed lower heat tolerance compared to

multiparous cows. Furthermore, when the data was divided into periods before and after 2010, lower

peak THI values were observed in the latter period, possibly indicating a decline in heat tolerance due

to breeding practices.

Despite substantial advancements in computational capabilities enabling the acquisition of our results,

we advise conducting additional statistical validation employing techniques such as bootstrapping, cross-

validation, or alternative subsampling strategies. Furthermore, to statistically consolidate the findings,

consideration may be given to a multi-breed model that integrates all dairy cow breeds into a single unified

model. Some of these steps would require additional algorithmic optimizations. Nonetheless, the rich

dataset available presents opportunities for further research, including the examination of additional milk

performance parameters such as lactose content or somatic cell count. Also, incorporating the animal

breeding history into the model could provide deeper insights into breeding dynamics and effects on heat

responses. The consideration of pre-calving weather exposure also warrants attention. Moreover, the

low peak-performance THI values in our results highlight the necessity of future studies on heat stress

mitigation strategies, for instance, through dietary interventions.
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Introduction

Climate change leads to higher average and daily maximum temperatures as well as a more frequent

occurrence of heat waves (MeteoSchweiz, 2024b; IPCC, 2023). For example, summers in Switzerland

during 2023, 2022, 2019, 2018, 2017, and 2015 have demonstrated a marked increase in the frequency of

prolonged periods of high temperatures (MeteoSchweiz, 2023). Figure 1.1 depicts this trend.

Figure 1.1: Annual frequency distribution of hot days in all localities within Switzerland since 1980,
where a hot day is characterized by a maximum temperature exceeding 30°C.

These unfavorable weather conditions are detrimental to agricultural production. For dairy farmers, ele-

vated temperatures can adversely affect milk yield, quality, fertility, and other related factors (Bernabucci

et al., 2015; Lambertz et al., 2014; Bohmanova et al., 2007; Dunn et al., 2014; Ranjitkar et al., 2020;

West, 2003; Gantner et al., 2017; Maggiolino et al., 2020; Salfer et al., 2019; Smith et al., 2013; Hammami

et al., 2013; Hill and Wall, 2015; Vitali et al., 2015; Cox et al., 2016). The magnitude of the effects of

heat stress on dairy milk production varies across breeds and has been analyzed for a subset of breeds

and geographic regions outside of Switzerland (Bryant et al., 2007; Smith et al., 2013; Gantner et al.,

2017; Ahmed et al., 2022). Although the dairy sector represents the largest share of the national agricul-

tural production, accounting for 23% of total output with over 545’000 cows (BLW, 2023), the extent to

which dairy producers are exposed to quantitative and qualitative milk losses for different breeds remains

uncertain. According to the Swiss Federal Office of Agriculture the agricultural production should be

adapted to climate and regional properties. In line with this objective, this work provides an assessment

on how hot weather impacts the milk quantity and quality in Switzerland. In particular, we examine how

1
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milk yield (MY) and energy-corrected milk yield (ECM) are affected by varying levels of the Temper-

ature Humidity Index (THI). Acknowledging that previous studies indicate diverse coping mechanisms

with heat stress among breeds, this research emphasizes a comparative analysis of multiple breeds. To

facilitate this investigation, we utilize subsamples from a dataset comprising 130 million test-day samples

sourced from the three principal breeding organizations in Switzerland. These samples span a period of

42 years, from 1982 to 2023, with data from six predominant breeds: Holstein, Brown Swiss, Original

Braunvieh, Swiss Fleckvieh, Simmental, and Jersey. The dataset covers the entire national territory.

1.1 Literature Review
The Effect of Heat Stress Across Dairy Cow Breeds

Different breeds have different responses to heat stress with respect to milk production. The impact of heat

stress while making a distinction between breeds is globally understudied.

The majority of studies assessing the impact of heat stress on the performance of dairy cows focus on a

single breed, with examples such as Bernabucci et al. (2015); Lambertz et al. (2014); Hammami et al.

(2013); Hill and Wall (2015). Only a limited number of authors consider multiple breeds. According

to Bryant et al. (2007), Holstein Friesians exhibit greater sensitivity to heat effects compared to New

Zealand Jerseys, with the latter maintaining a more stable milk yield under elevated 3-day mean THI

conditions. No significant differences were observed in protein and fat content between the two breeds.

Smith et al. (2013) report an increase in milk production among Jersey cows during heat stress, while

performance declines for Holsteins in a research farm in the United States. Gantner et al. (2017) explore

the milk performance of Holstein and Simmental cows in Croatia, finding a greater vulnerability to heat

stress among high-producing cows compared to their low-performing counterparts. Their findings suggest

a higher resistance to heat stress in Simmental breeds compared to Holsteins, though further research is

warranted. Ahmed et al. (2022) examine the effects of heat shocks—defined as periods of five consecutive

days with average temperatures exceeding 25°C—on milk production. Overall, no significant differences in

heat shock tolerance were observed among Swedish Holsteins, Swedish Reds, and a crossbreed of the two

in Sweden, suggesting that breed diversification as a strategy to mitigate heat stress risks is ineffective.

Nonetheless, Swedish Red cows exhibit greater resilience to negative heat effects when considering heat

events in relation to the genetic milk index. Cuellar et al. (2023) include Brown Swiss in a comparative

study with Holsteins and their crossbreeds, finding a more pronounced decrease in milk yield for Brown

Swiss than for Holstein.

The Effect of Heat Stress in Swiss Dairy Production

The effect of heat stress on the quantity and quality of milk production at the animal-level for commercial

farms in grassland-based systems over a long period of time is understudied in Switzerland.

Globally, the phenomenon of heat stress in dairy cows is extensively researched, particularly at the level

of individual animals in research farms. Additionally, numerous studies have quantified the effects of

heat stress on dairy cows using panel data across various regions worldwide. The works mentioned

in the preceding paragraph represent only a select number of these investigations. Only a few recent

studies consider data from Switzerland to study the effects of heat stress on dairy cows: Bucheli et al.

(2022b) analyze the annualized farm-level effect of heat stress on milk revenues, veterinary expenses

and feed purchases. In the period from 2003 to 2015 Swiss farmers are on average financially robust

to heat exposure. However, this does not imply non-existence of a related risk. Gasser et al. (2023)

find that meteorological features do not improve the accuracy of daily milk yield predictions. The data

originates from an experimental farm in Tänikon, Switzerland. Furthermore, Holinger et al. (2024)

observe behavioral changes in cows under heat stress with data of four Swiss commercial farms in the

period from June to September 2021. During days characterized by elevated maximum THI values, cows
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are observed more frequently in proximity to the drinker during the morning hours. In contrast, during

the afternoon, they tend to congregate in close proximity to each other and seek shade. Moreover, on such

days, there is a notable decrease in the duration of time spent lying down, accompanied by an increase

in their locomotor activity as noon approaches.

1.2 Research Objective
This study seeks to build upon methodologies established in prior research to examine the impact of heat

stress on Swiss dairy production across various breeds. Although the complex physiological responses

of individual animals to heat stress are extensively studied and well documented (Kadzere et al., 2002;

Becker et al., 2020), the effects of heat stress at broader geospatial scales, including herd, regional, and

national levels in grassland-based systems across breeds, remain under-researched. Swiss dairy farms

predominantly employ pasture-based systems, with cows spending substantial amounts of time grazing

outdoors (BLW, 2023). Evaluating the effects of THI on milk performance variables within this production

context could provide valuable insights into the actual influence of ambient temperature and humidity

on dairy cows.

Heat stress exerts a direct impact on economically significant factors, including milk yield, milk component

yield, and the health of cows. For dairy farmers, variations in the quantity and quality of production

are anticipated and regarded as standard to some degree. Nevertheless, these agronomic factors are

intrinsically connected to the dairy producers’ revenue streams from milk. Farmers continuously modify

their management practices, generally through technological advancements, enhanced knowledge, or shifts

in policy (BLW, 2023; Koutouzidou et al., 2022), as well as in response to heat stress (Ji et al., 2020;

Vroege et al., 2023). This includes, for example, feeding regimes, housing systems, cooling systems,

milking technologies or breeding strategies (Kadzere et al., 2002; West, 2003). All these potentially

confound heat stress effects and pose obstacles for a full isolation of the causal weather effects.

Switzerland is a topologically diverse country. This geographic variability leads to different heat exposures

on a regional level as depicted on Figure 1.2. The effective animal-level heat exposure depends on many

environmental factors. In our work, our aim is to develop a framework to isolate the weather effects from

farm-specific properties, spatial heterogeneity, herd characteristics, as well as individual animal responses

and assess their impact on the aforementioned agronomic indicators. Moreover, we specifically check for

weather effect differences across breeds to validate if certain breeds are more-heat stress tolerant than

others and may qualify for heat-stress resilience under the warming climatic trends in Switzerland. Our

analysis remains at the breed level and does not consider genomic selection or herd evolution.
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Figure 1.2: The median number of days when the maximum THI surpasses the threshold 74 substantially
increases for some regions in the period t1 from 1984 to 2023. A THI of 74 stands for moderate heat
stress. The coloring scheme is logarithmic because some towns in the canton Ticino (southermost part)
exceed the median compared to the rest of Switzerland considerably. Moreover, dairy farming is more
widespread in the northern parts of Switzerland.
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1.3 Research Question and Hypothesis
To achieve the above-mentioned objective, the study sets the main focus on the following research ques-

tion:

At what Temperature Humidity Index (THI) values do changes in dairy performance occur for the

different dairy cow breeds in Switzerland?

The primary variables under consideration are the milk yield, measured in kilograms per day, and the

energy-corrected milk yield (ECM), also measured in kilograms per day. The ECM incorporates yields

from both fat and protein components. Recognizing the variance in component yields across different

breeds, the ECM yield provides a standardized measure for comparative analysis among breeds. Building

upon previous studies, it is anticipated that both volumetric and component yields will decline once

specific thresholds of the Temperature-Humidity Index (THI) are surpassed. Reported threshold values

include 68 (De Rensis et al., 2015), 72 (Armstrong, 1994), and 76 (Vroege et al., 2023)1. It is further

anticipated that there will be breed-specific variations in the THI values critical for optimal dairy perfor-

mance (Kadzere et al., 2002). Jerseys are posited to exhibit greater heat tolerance compared to Holsteins,

a characteristic also expected in the Simmental breed. In conclusion, the Holstein breed, known for high

yields, is likely to experience greater stress under increased heat conditions compared to lower-yielding

breeds such as Simmental and Jersey.

1.4 Organization
The remainder of this document is organized as follows: First, in Chapter 2, we provide an overview

of various aspects regarding heat stress in dairy cows, breeds, and farms to set the agronomic scope.

This includes aspects from animal physiology, but also political and economic aspects of the Swiss dairy

market because our study covers a time period of 42 years. Second, within Chapter 3, in consideration of

the non-experimental nature of our study, we delineate our data strategy along with an exploratory data

analysis in Section 3.1. This examination incorporates the agronomic, the meteorological, and the geospa-

tial data. Guided by our research question and the insights gained from the data analysis, we determine

the appropriate model and estimation strategy in Section 3.2 and Section 3.4. This includes our method-

ological advancement to estimate Generalized Additive Mixed Models with an unprecedented number of

random effect factor levels. Third, we analyze and discuss the findings in Chapter 4. The concluding

Chapter 5 summarizes our contributions, limitations, and also proposes future research directions.

1 Many studies employ differing definitions of THI and utilize diverse aggregation methodologies, including summation,
averaging, as well as determining minimal or maximal values over hours, single days, multiple days, weeks, months, or
even years. Consequently, careful consideration is imperative in the interpretation of THI values.
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Background

At a high level, the production of dairy farming and livestock can be expressed as the result of a phenotype

product P which is a combination of a genotype G realization and environmental factors E: P = G+E+

G×E (Adhikari et al., 2022). The genetic factors G are influenced by breeding. The environmental factors

E are farm management practices such as housing or feeding, policy and socio-economic environment,

ambient weather and climate. Both breeding strategies and changing environmental conditions impact

susceptibility to heat stress, dairy performance, animal health and reproduction. The interaction between

the G and E determines to which degree a dairy cow may express the full genetic potential with respect

to a selected metric such as milk performance.

Given the animal-level nature of our dataset, this chapter starts with an overview of the physiological

aspects of dairy cows under heat stress conditions in Section 2.1. We thereby highlight critical factors

that may necessitate modelling. Then, in Section 2.2 we analyze a range of selected models estimating

heat-effects across breeds to appraise the current technical state-of-the art and identify potential gaps.

This is followed by a comprehensive review of the developments in Swiss milk production over the past

four decades in Section 2.3, aligning with the scope of our data: breeding associations set long-term

goals which ideally increase the milk yield in the long run. Moreover, legislative amendments and policy

measures can substantially influence farm management practices and breeding techniques. Collectively,

this chapter establishes the foundational understanding of factors that may inform the modeling process

in Chapter 3.

6
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2.1 Animal Physiology
This section summarizes key concepts in animal physiology pertaining to heat stress. Unless explicitly

indicated otherwise, the review from Kadzere et al. (2002) serves as the source of information for this

section and its subsequent subsections. We discuss some aspects of the cow physiology to better under-

stand the complex heat-related interactions between the animal G and the environment E. Moreover,

the section highlights physiological arguments, why we might expect different heat stress responses for

different breeds.

Figure 2.1: Animal physiology: a dairy cow achieves maximum productivity at minimal physiological
costs in the thermoneutral zone. A broadly accepted environmental metric to measure heat stress is the
Temperature Humidity Index (THI).

Definition 2.1.1. Heat Stress in Dairy Cows

Heat stress is the collective impact of high temperatures compelling adjustments from sub-cellular to the

whole animal level in order to avoid a physiological dysfunction and adapt better to the current environ-

ment.

As a homothermal the cow must maintain a thermal equilibrium with the environment to regulate the

biochemical reactions and physiological processes. The environmental factors include air temperature, air

movement, humidity, as well as radiation. When cows fail to balance their body temperature within their

thermoneutral zone and keep it in physiological homeostasis, they will experience hyperthermia, which

may lead to death. The main characteristics of heat stress, independent of any effects of feed intake, are

elevated respiration rates, increased rectal temperatures, an impaired metabolism, reduced growth and

lactation, as well as poor reproductive performance.

2.1.1 Thermoregulation
Heat Increment The heat production in the dairy cow serves to maintain equilibrium with heat

dissipation mechanisms and is controlled by the nervous system, endocrine system, appetite, digestion,

respiratory enzymes as well as protein synthesis. Factors affecting the heat production intensity are the

ambient temperature, hormone concentrations such as growth hormones, body size, breed, fodder and

water availability. Heat increment is the increase in body heat production resulting from digestation,

heat absorption and the metabolism of nutrients activated through feed intake. Large amount of feed

intake generate significant metabolic heat. Moreover, an increased milk production relates to a raised
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heat increment. The heat increment during the lactogenesis depends on the fodder quality and quantity.

The milk production capacity also depends on the cow size. The latter is linked to the size of their

gastrointestinal tracts, which have bigger digestion capacity in larger cows. This increased capacity

results in a higher substrate availability for the milk production.

Heat Dissipation Dairy cows lose heat through factors such as sweating, changes in environmental

temperature, changes in the radiating surface, air flow changes, or convection. The amount of radiant

heat a cow absorbs is influenced by the environmental temperature and its coat color. Dark-coated cows,

for instance, generally absorb more heat than those with lighter brown coats. Cows can release metabolic

heat through evaporative cooling, wherein water absorbs heat from the cow’s surface. The degree of heat

loss through evaporation rises with increasing ambient temperatures. Additionally, convection serves as

a method for heat dissipation when cooler air circulates around the warmer body, absorbing heat which

is then carried away. However, if the surrounding air is warmer than the cow’s skin, heat is instead

transferred into the animal’s body. Conductive transfer, another form of heat exchange, happens when

the cow is in direct contact with another surface or entity. Unlike convection, which entails the movement

of the subject, conduction involves heat transfer without the displacement of the subject. Conduction

becomes pertinent when a cow is lying down, thus selecting appropriate ground surfaces or bedding

materials is important for both animal welfare and strategies to mitigate heat stress.

Thermoneutrality Overall, the maintenance of thermoneutrality requires an equilibrium between heat

gains and heat losses with the environment. This can be stated with the following heat balance equation

M = ±K ± C ± R + EV , where M is the metabolic heat production, K is the heat exchanged by

conduction, C by convection, R by radiation, and EV by evaporation. Generally, the thermoregulatory

response of dairy cows may have changed over time since breeding strategies promote a genetic selection

for an increased milk production (c.f. Figure 3.2).

Heat Stress When a cow absorbs more heat than it can dissipate, it experiences heat stress. Factors

such as environmental conditions and specific animal traits such as age, breed, sex, metabolic state, coat

condition, nutrition, and health status contribute to heat stress. For instance, Jersey and Holstein cows

have varying rates of heat production and dissipation, which could be attributed to differences in body

size. Additionally, performance indicators such as productivity, growth, and fertility are other factors

influencing heat stress. These aspects are also affected by the type of housing, geographic location, the

efficiency of ventilation systems, and the cow’s social rank within the herd. Generally, high-producing

dairy cows are more affected because the thermoneutral zone shifts to a lower temperature range with

a higher milk production, feed intake and metabolic heat production (Gantner et al., 2017; Tapki and

Sahin, 2006).

Regulation Mechanism Within the thermoneutral zone (TNZ), heat production is kept to a minimum

under typical body temperatures, ensuring optimal physiological performance and maximum productivity.

The lower limit of the TNZ is known as the lower critical temperature (LCT) and the upper limit as the

upper critical temperature (UCT). For dairy cows, the TNZ spans about 5-25°C, with an UCT ranging

from approximately 25-26°C (Becker et al., 2020). If the surrounding temperature falls below the LCT,

the cow must elevate its heat production to maintain thermal balance. Between the LCT and UCT, the

cow sustains its body temperature. An example reported LCT range is -17° to-30°C (Kadzere et al.,

2002; Bryant et al., 2007). However, as the ambient temperature rises within the TNZ, evaporative heat

loss diminishes, which is counteracted by vasodilation and increased water evaporation. Upon reaching

the UCT, heat production rises due to inadequate evaporative cooling. When thermal stress exceeds

the evaporative loss capacity, the cow may enter a state of hyperthermia. The specific values for LCT
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and UCT are influenced by factors such as age, species, breed, feed intake, diet composition, tissue and

external insulation, as well as animal behavior. Figure 2.1 depicts the interplay between the different

thresholds.

Heat Stress Response Thermal sweating is a common response to heat stress. It plays a role in

evaporative cooling and occurs when ambient temperatures rise, reducing the temperature gradient with

the animal’s body. An increase in sweating is positively correlated with enhanced blood flow to the

cow’s skin, and sweat rates can vary among different breeds. Breed variations influence how respiration

rates respond to elevated temperatures; for example, Jersey cows often display higher respiration rates

compared to Holsteins, suggesting better heat dissipation in Holsteins. Rising relative humidity during

heat stress can result in decreased respiration rates, increased surface evaporation, raised rectal temper-

atures, reduced feed intake, and diminished milk production. Short-term heat exposure reduces heart

rate as a stress response, though this effect diminishes with long-term exposure. Dairy cows under heat

stress show reduced growth hormone levels because metabolic heat production must be lowered. High

temperatures may enhance digestive efficiency due to prolonged feed retention and decreased dry matter

intake. To manage heat stress, dairy farmers employ protective measures, breeding strategies, and dietary

adjustments. Quantifying the direct impact of environmental conditions on milk production is complex

due to intricate interdependencies such as farm management. Nonetheless, research consistently shows

a negative relationship between heat stress and milk output, including volume, fat, and protein content.

Table 2.1 lists the expected effects on selected dairy performance metrics for lactating dairy cows.

Variable Effect References

Milk Decrease Ahmed et al. (2022); Gisbert-Queral et al. (2021)

Fat
no effect∗

decrease†
Vroege et al. (2023)∗, Moore et al. (2023)†,Vinet et al. (2023)†

Protein Decrease Gao et al. (2017); Vinet et al. (2023)

SCC Increase Hammami et al. (2013); Lievaart et al. (2007)
MUN Increase Gao et al. (2017)
BHB Increase Stefanska et al. (2024)

Lactose
no effect∗

Increase†
Kadzere et al. (2002)∗, Moore et al. (2023)†

Citrate Increase Tian et al. (2016)
Aceton Increase Tian et al. (2016)

Table 2.1: Expected impact of heat stress on dairy performance performance: milk, fat protein are the
primary variables of interest for our study. Somatic cell count (SCC), milk urea nitrogren (MUN), β-
hydroxybutyrate (BHB), lactose, citrate and aceton are provided for complementary purposes.

Adaptation Dairy cows, akin to other homeothermic animals, have physiological processes to maintain

their body temperature over a spectrum of environmental temperatures. The capacity to adapt to

changing environmental conditions differs among species and breeds. For example, in an experiment with

high-yielding cows which perform best in temperate climates, relocating them to tropical areas leads to

reduced milk yield. Breeds that are native to tropical climates exhibit unique traits like decreased feed

consumption, lower metabolism, improved heat release due to greater body surface areas, and either

more sweat glands or shorter hair, assisting in transferring heat from the body’s center to the skin and

environment. Research on heat stress indicates that Holsteins show more significant drops in milk and

protein output than Jerseys under such conditions. The effects of adaptation diminish when exposure to

heat stress lasts for several weeks. Moreover, dairy cows show a dual-phase daily cycle, with rising body

temperatures from midnight to early morning and again from afternoon to evening. Lowering nighttime

temperatures can counteract high daytime temperatures, offering some protection (Araki et al., 1987).

However, this protection is lost if nighttime temperatures remain elevated. Typically, these adaptation
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mechanisms can sustain regular productivity in warm climates. Even high-milk-producing cows can

adapt during warm summer periods as they slowly acclimate to warmer weather. Nonetheless, sudden

and extended extreme heat reduces the likelihood of adaptation and heightens the exposure to heat

stress(Vroege et al., 2023).

2.1.2 Temperature Humidity Index
The Temperature Humidity Index (THI) is a metric to indicate the thermal climatic conditions with

temperature and relative humidity. It is used as a proxy for heat stress levels and exposure as depicted

in Figure 2.1 with the goal to give a more precise measure of environmental stress on cows than a single

variable. The THI is a simple, comprehensive measure and used as a tool for productivity insights, farm

management decisions such as cooling systems or fodder adjustments, and animal welfare. The simplicity

of the measure might be a reason for the wide acceptance in academia and industry. Disadvantages of

the THI are the limitation to two variables whereas other environmental variables such as radiation, wind

speed, precipitation also affect the thermal balance of dairy cows as discussed in Section 2.1.1. Moreover,

THI is not standardized (Moore et al., 2023). Oftentimes, the THI is used with threshold values to

decide if a cow is exposed to heat stress or not. However, these may not globally apply and depend on

the location and other factors such as the cow breed. Each individual animal may have varying heat

stress tolerances. Different THI formulas for different regions are available to accommodate climate and

environmental heterogeneity (Bohmanova et al., 2007). For the remainder of this work we use the THI

definition from the National Research Council (1971):

Definition 2.1.2. Temperature Humidity Index (THI)

THI = (1.8 × T) + 32 − [(0.55 − 0.0055 × RH) × (1.8 × T− 26)] , (2.1)

where T is the air temperature in [°C] and RH the relative humidity in [%]. Figure A.1 provides a THI

mapping of the temperature from 0-40°C and the relative humidity from 0-100%.

2.2 Modelling Heat Stress Across Breeds
The preceding Section 2.1 discusses the manner in which diverse physiological characteristics, potentially

unique to specific dairy cow breeds, influence their responses to heat stress. We have only identified three

studies that explore the impact of weather conditions on dairy cow breeds within commercial pasture-

based agricultural systems. Table 2.2 provides a brief comparison between their and our work. The

subsequent subsection will provide brief summarizes of their methodology.



Background 11

Study Breeds Records Farms Cows Time Location

Bryant et al.
2007

Holstein
NZ Jersey
HF/NZJ

65’905 496 19’201 1990-2002 New Zealand

Gantner et al.
2017

Holstein
Simmental

1’070’554
1’300’683

5679
8827

70’135
86’013

2005-2012 Croatia

Ahmed et al.
2022

SE Holstein
SE Red
SH/SRB

Other

2’893’367
1’279’758
417’312
973’729

1’435 ? 2016-2019 Sweden

Our work
2024

Holstein
Brown Swiss

Original Braunvieh
Simmental

Swiss Fleckvieh
Jersey

27’536’089
56’695’597
4’996’060
8’731’876
31’484’784

734’685

24’963
26’585
18’613
19’411
27’392
4’302

971’198
1’719’156
149’478
299’698

1’038’291
23’675

1985-2023
1982-2023
1982-2023
1984-2023
1984-2023
1998-2023

Switzerland

Table 2.2: Comparison of studies analyzing heat stress across breeds with production farm data.

2.2.1 Cow-Level Milk Yields Across Breeds (New Zealand)
Bryant et al. (2007) propose a mixed-model to quantify effects of the thermal environment across three

breeds in New Zealand. Their focus is on heat stress as well as cold stress. Hence, they work with two

environmental indexes THI and cold stress index CSI as depicted in Figure 2.1. The study utilizes data

provided by a corporation managing over 400 herds distributed across various regions of New Zealand.

The sample set is restricted to first lactation spring-calving animals exclusively. Let H denote the set of

individual herds or farms, Y the years for which data is available, B the breeds under examination, and

D the test days considered. The dependent variables employed in this analysis include daily milk yield,

as well as daily fat and protein concentrations. The model is defined as

Definition 2.2.1. Heat Stress Model by Bryant et al. (2007)

yi,j,k,l = µ+Hi +Yj +Bk + b1ai,j,k + b2di,j,k +

4∑
n=0

αnPn(ti,j,k,l) +

2∑
o=1

γoxi,j,l×Bk +xoi,j,k + ϵi,j,k,l, (2.2)

where Hi is the fixed class effect for herd i ∈ H, Yj the fixed class effect for year j ∈ Y, Bk the fixed class

effect for breed k ∈ B, ai,j,k the age of the cow at calving in months, di,j,k the parturition date deviation

from the heard-year parturition date, ti,j,k,l the days in milk for test day t, xi,j,l the 3-day average of

the environmental index, ci,j,k the annual random permanent effect of cows in herd i2 and year j for the

breed k, and ϵi,j,k,l is the error term. Accordingly, b1 and b2 are the age and parturition coefficients,

αn are the Legendre polynomial coefficients measure time effects with respect to days in milk, and γo

measure the effect of the environmental index separately for each breed.

Limitations The effect of THI and CSI is modelled as an inverse parabola and poses therefore some

preliminary assumption about the non-linear effect of THI.

2.2.2 Cow-Level Milk Yields Across Breeds (Croatia)
Gantner et al. (2017) analyze the impact of the THI to the daily milk yield and the somatic cell count

in Croatia with a mixed model approach. Both breeds are split into a high and low production level in

terms of their daily milk yield. A fixed-effect regression is executed on each combination of integer THI

values, breed and production level. The effects days in milk, calving seasons, age at calving, region and a

2 It remains unclear if this a factor level per animal or not.
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binary heat stress indicator. To evaluate, the authors compute the difference on the mean square scores

for each THI category and test for significance with Scheffe’s method.

Limitations The method does not take into account the non-linear effects of the THI on dairy cows.

The authors use a mixed-model, but do not declare random effects. Moreover, critical THI levels are

assumed to be in a range between 68 and 78.

2.2.3 Farm-Level and Cow-Level Milk Yields Across Breeds (Sweden)
Ahmed et al. (2022) employ several modelling approaches. One approach assesses the impact of temper-

ature on average dairy production at the farm level, incorporating temperature as a non-linear smooth

function. This methodology is considered more robust than the methods described in Section 2.2.1 and

Section 2.2.2 since it allows for unrestricted non-linear temperature effects. The second approach utilizes

a linear model with animal-level data to determine whether diversifying a herd with different breeds can

serve as a strategy for mitigating heat stress.

Milk Performance Estimation

The authors use Generalized Additive Models (GAMs) to estimate the relationship between weather and

milk performance variables. The dependent variables are the average milk produced per cow [kg/day],

average energy-corrected milk (ECM) produced per cow [kg/day] and bulk milk somatic cell counts

(BMSCC) [cells/ml]. As above, the set I defines the farms. The measurement periods are set as years

in T . The seasons within a year are defined in S = {Winter (December-Februrary), Spring (March to

May), Summer (June to August), Automn (September to November)}. The penalized spline regression

is

Definition 2.2.2. Temperature Effect on Dairy Performance by Ahmed et al. (2022)

Milki,s,t = β0 +

p∑
j=1

fi[(Tempi,s,t)] + γXi,s,t + µi,s + ϵi,s,t , (2.3)

where i ∈ I, t ∈ T and s ∈ S. Confounding effects of humidity and precipitation on temperature are

controlled by Xi,s,t which is the sum of their first and second order terms. µi,s controls for unobserved

farm characteristics and farm-specific seasonality. ϵi,s,t is the error-term. fj are the non-parametric

polynomial smooth functions for which the number of functions p and spline coefficients are estimated

with a penalized log-likelihood method.

Breed Diversification

Moreover, the authors aim to validate breed diversification as a heat stress adaptation measure. In this

case the available farms are defined in J and the cows in I. Let Hwj,s,t be a heatwave indicator variable

1

(∧t
τ=t−δ(Tempj,τ ≥ T )

)
which equals 1 if the temperature on farm i has been over a threshold T

during the last δ days. They set δ = 6 to cover the past week of the milk recording day and the maximum

temperature T = 25°C. The set M = {SH, SRB, SH/SRB, Others} represents the available breeds, where

SH is Swedish Holstein, SRB Swedish Red and SH/SRB a mixed breed. The variable Breedm,i be the

indicator variable 1 (Breed = m) assigning the breed m ∈ M to cow i. Xi,j,s,t summarizes the first and

second order farm-level humidity and precipitation, as well as the days in milk and the lactation number

of a cow i. The following regression incorporates the breeds

Definition 2.2.3. Breed Diversification by Ahmed et al. (2022)

Milki,j,s,t = α0+ϕHwj,s,t+
∑

m∈M
αmBreedm,i+

∑
m∈M

δmBreedm,i×Hwj,s,t+ρXi,j,s,t+θj,s+ϵi,s,t , (2.4)
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where i ∈ I, j ∈ J , t ∈ T and s ∈ S. αm captures the effect on milk production of each breed m.

δm reflects the effect of the breed on milk production during a heatwave. θj,s are the farm-level seasonal

fixed effects. Xi,s,s,t are farm-level weather controls as well as cow control variables such as days in milk

and parity.

2.3 Evolution of the Swiss Dairy Market
Our study encompasses a time period from 1982 to 2023. Switzerland’s dairy industry is a structured

and regulated market, which currently constitutes the most significant sector of Swiss agriculture. This

section focuses on the evolution of the Swiss dairy market in the past 40 years. We focus on policy

interventions that affect dairy cow husbandry and, consequently, have implications for milk production.

The policy interventions are summarized in Table 2.3.

Policy Description Enactment Expiration

Milk quotas limit producion, penalize excess 1977 2009
RAUS free-range production system 1993 -
BTS free-stall barns 1996 -
Milk price supplement cheese production, silage-free

milk
1999 -

Grassland-based feeding less concentrate 2014 -
Commercial milk export loss compensation 2019 -
Pasture payment ample outdoor access 2023 -
Cow longevity optimize longevity 2024 -

Table 2.3: Policies tangential to Swiss milk production.

1950-1990: Protective Years In the period following World War II, although a liberal economic

policy predominantly prevails, the Swiss agricultural sector is characterized by the implementation of price

guarantees, sales commitments, and tariffs, notably within the domain of dairy production (Huber et al.,

2023). The agricultural act of 1951 ensures prices for agricultural commodities that cover production

costs. Concurrently, milk production undergoes economic rationalization, marked by a reduction in

the number of producers juxtaposed with an increase in the volume of milk production. Enhanced dairy

productivity leads to subsidies covering production costs rising to an annual level of CHF 0.5 billion in the

1970s. To mitigate the expansion of dairy production, farm-level milk production quotas are introduced

in 1977, based on factors such as the area of agricultural land and the farm’s geographical location.

(Huber et al., 2023). Collectively, dairy production accounts for up to 54% of federal agricultural subsidies

(Stadler, 2015). This system results in production surpluses which are then sold on international markets,

thereby imposing significant financial obligations on the federal government to support producer prices.

Additionally, the intensive production system prompts environmental concerns (Huber et al., 2023).

1990-2010: Decoupling and Liberalization In 1992, as a consequence of the previously mentioned

national agricultural challenges and external pressure to comply with international standards, decoupled

direct payments are instituted to support farmers independently of their production output and location,

thus ensuring the maintenance of social and environmental standards. These direct payments comprise

lump-sum area payments and ecological payments. The RAUS3 program is introduced in 1993 to en-

courage free-range production systems. The program mandates that dairy cows have access to pasture

during the summer and to uncovered outdoor areas during the winter. In 1996, the BTS4 program is

inaugurated, promoting animal-friendly housing systems such as free-stall barns. This action-based pay-

3 Regemässiger Auslauf ins Freie
4 Besonderns tierfreundliche Stallhaltungssysteme

https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen/produktionssystembeitraege23/tierwohlbeitraege1.html
https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen/produktionssystembeitraege23/tierwohlbeitraege1.html
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ment scheme is calculated annually per livestock unit, providing compensation for additional investment

and workload.

A significant policy reform in 1999 links the eligibility for direct payments to the adherence to cross-

compliance standards5. Furthermore, in 1999, price support measures for milk are abolished and tariffs

are reduced to comply with international agreements. Concurrently, a milk price supplement payment

for dairy milk processed into cheese and silage-free milk6 is established (Finger et al., 2017).

Since 2007, the cheese market between the European Union and Switzerland has been fully liberalized.

Export subsidies and tariffs for cheese are progressively eliminated between 2002 and 2007. Shortly

thereafter, in 2009, milk quotas are abolished, necessitating that milk producers and processors negotiate

contracts to establish milk quantity and pricing.

2010-today: Ecology & Animal Welfare In 2014, a grassland-based milk and meat payment

scheme7 is inaugurated. This action-oriented payment system compensates farmers based on the area of

grassland cultivated. The policy is designed to promote sustainability, environmentally-friendly produc-

tion systems, and a market-oriented approach to production (Mack et al., 2017). In 2019, a compensation

mechanism for commercial milk8 is introduced to mitigate the increased market pressures resulting from

the termination of export payments. Producers of commercial milk receive compensation quantified per

kilogram. In 2023, a pasture payment scheme9 is introduced as an alternative to the RAUS. This pro-

gram is available to farms that provide ample access to uncovered outdoor areas and pastures for their

cows. The initiative aims to lower ammonia emissions, encourage grassland-based production systems,

and enhance animal welfare.

5 Ökologischer Leistungsnachweis
6 Zulage für verkäste Milch und für Fütterung ohne Silage
7 Beitrag für graslandbasierte Milch- und Fleischproduktion
8 Zulage für Verkehrsmilch
9 Weidebeitrag

https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen/oekologischer-leistungsnachweis.html
https://www.blw.admin.ch/blw/de/home/nachhaltige-produktion/tierische-produktion/milch-und-milchprodukte/zulage-fuer-verkaeste-milch-und-fuer-fuetterung-ohne-silage.html
https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen/produktionssystembeitraege23/beitrag-fuer-graslandbasierte-milch--und-fleischproduktion.html
https://www.blw.admin.ch/blw/de/home/nachhaltige-produktion/tierische-produktion/milch-und-milchprodukte/zulagefuerverkehrsmilch.html
https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen/produktionssystembeitraege23/tierwohlbeitraege1.html
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Materials and Methods

In this chapter, an overview of the dataset is initially presented in Section 3.1. This includes agronomic,

geospatial, and meteorological data. Subsequently, in Section 3.2, in conjunction with the foundational

information presented in the preceding Chapter 2 and the data insights from Section 3.1 of this chapter, we

identify a suitable modeling strategy to address the research question. Following this, Sections 3.3 and 3.4

offer a detailed examination of Mixed Models and Generalized Additive Models (GAM) as model fitting

frameworks, along with our methodological contributions to estimating GAMs with tens of thousands of

random effect factor levels.

3.1 Data
3.1.1 Agronomic Data
We have access to historical milk sampling data from three major Swiss cow breeding associations Swissh-

erdbook (2024), Braunvieh Schweiz (2024) and Holstein Switzerland (2024). The three associations have

aims that are intimately linked to the breeding and promotion of particular cow breeds within Switzer-

land. Swissherdbook focuses mainly on Holstein, Simmental, and Swiss Fleckvieh. Holstein Switzerland

is dedicated exclusively to Holstein and Red Holstein cattle. Meanwhile, Braunvieh Schweiz is centered

around Braunvieh and Original Braunvieh cattle.

The data pool contains more information than test-day milk sample records. Along with these, the

associations store breeding data, such as udder and other physical traits, insemination, and calving data.

The data exchange standard is defined by ASR (2024) and is maintained by Qualitas AG (2024). This

guarantees a common database format among the different breeding associations10.

Generally, breeding associations collect monthly test-day milk samples on dairy farms where the corre-

sponding farmer participates in the breeding program. The exact sampling guidelines can be consulted

in the milk inspector manual (Swissherdbook, 2019). Not all dairy farmers are part of a breeding as-

sociation. Some conduct their own herd and breeding management on their farms and do not actively

participate with their cows on the breeding market. However, the available data should be representative

for Switzerland when considering the geospatial distribution of the data. The latter is further discussed

in Section 3.1.2 and visualized in Figure 3.3.

Data Processing For each of the three associations, the milk sample data is provided in a slightly

different raw tabular database format. We write custom parsers on a best effort basis to process the

individual datasets and merge the data from the three different providers into a single dataset. Table 3.1

10 In practice, some subtle differences between the different databases and schema versions exist.

15

https://asr-ch.ch/images/content/Download-Ordner/Datenschnittstelle/RindviehCH_Interface-D.pdf
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summarizes a selection of available variables11. Note that each farm identifier can be linked with the

corresponding farm metadata. This allows us to determine the farm location at the ZIP code level. The

ZIP code associated with each sample is important for the matching process with the weather data. A

finer granularity at the exact postal address level would be technically feasible but is not applied for data

protection and privacy reasons.

Milk Performance Variable Description / Unit / Type

milk Day milk yield [kg]
fat Fat [%]
protein Crude protein [%]
ecm yield Energy-corrected milk yield [kg]

lactose Lactose [%]
samplePersistence Sample persistence [%]
somaticCellCount Somatic cell count [x 1000/ml]
milkUreaNitrogen Milk urea nitrogen [mg/dl]
citrate Citrate [mg/dl]
aceton Aceton [mg/l]
caseinMeasured Casein [%]
acetonMmol Aceton [mmol/l]
acetonIr Aceton IR (infrared spectroscopy) [mmol/l]
bhbConcentration BHB (beta-hydroxybutyrate) [mmol/l]

Metadata Variable

animalId Animal identification number [categorical]
animalBreedCode Animal breed code [categorical]
farmIdLocationSample Farm identification [categorical]
calvingDate Last calving date [date]
lactationNumber Lactation number [integer]
sampleWeighingDate Sample date [date]
days in milk sampleWeighingDate − calvingDate [days]
zip ZIP matching the farm associated with farmIdLocationSample [categorical]

Table 3.1: Subselection of ASR (2024) RindviehCH Interface Tables B01 and K33 Variables. Milk, fat
and protein yield are the three primary variables of interest in our work. We manually define days in milk
as the difference between sampleWeighingDate and calvingDate, and ecm yield as a combination of milk,
fat and protein with (Hall, 2023, Equation 9).

Multi-Stage Data Cleaning Strategy We clean the raw data with the following multi-stage data

cleaning strategy: First, we apply an interquartile range filter to milk, fat, and protein per breed and year.

A sample is removed from the dataset if one of the three variables is an outlier. An outlier is defined as

the value that lies below the lower bound Q1−1.5×IQR or above the upper bound Q3+1.5×IQR, where

Q1 is the first quartile, Q3 is the third quartile, and IQR is the range between the first and third quartiles,

calculated as IQR = Q3 − Q1. Second, only those samples are considered where milk, fat, and protein

measurements are all simultaneously available. Third, any samples linked to research farms, educational

farm facilities, breeding associations, or research institutions are excluded as non-representative. Fourth,

as there are some samples from outside the country, only Swiss farms, identifiable by their ZIP codes, are

included. Fifth, samples where days in milk exceed 600 days are discarded. Seventh, farms with less than

100 samples are excluded. Lastly, any animals contributing fewer than 5 samples are also eliminated.

11 We invite the reader to study further tables in the ASR (2024) specifications for follow-up projects.

https://asr-ch.ch/images/content/Download-Ordner/Datenschnittstelle/RindviehCH_Interface-D.pdf
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Breed Code Section Mapped Code Breed Name

RH Red Holstein HO
HO Holstein HO Holstein
RF Holstein HO
SF Swiss Fleckvieh SF Swiss Fleckvieh
BS Brown Swiss BS Brown Swiss
60 Simmental SI
70 Simmental SI Simmental
SI Simmental SI
OB Original Braunvieh OB Original Braunvieh
JE Jersey JE Jersey

Table 3.2: Breed codes and mapping according to Swissherdbook.

Breeds In the refined dataset, the animalBreedCode variable encompasses 10 distinct breed codes. In

accordance with the Swissherbook regulations (Swissherdbook, 2022), certain breed codes correspond

to identical breeds. Breeding objectives are determined at the breed level; thus, codes 60, 70, and

SI are unified under the same breeding goals. The same applies for the Holstein codes RH, HO and

RF. A comprehensive overview is presented in Table 3.2. This mapping is employed to streamline our

dataset, enabling us to focus on 6 breeds in total: Holstein (HO), Jersey (JE), Brown Swiss (BS),

Original Braunvieh (OB), Simmental (SI), and Swiss Fleckvieh (SF). Bloodline-specific breed information

is available in the Swissherbook regulations.

Breed Purpose Milk [kg/d] Protein [%] Fat [%] ECM [kg/d]

◦ Holstein Milk 27.20 (±8.58) 3.42 (±0.42) 4.22 (±0.67) 30.13 (±8.90)

× Swiss
Fleckvieh

Milk/Meat 22.45 (±7.51) 3.46 (±0.42) 4.27 (±0.69) 25.02 (±7.88)

△ Brown
Swiss

Milk 23.04 (±7.55) 3.56 (±0.43) 4.13 (±0.61) 25.56 (±8.02)

♢ Simmental Milk/Meat 19.39 (±6.50) 3.44 (±0.37) 4.04 (±0.60) 21.14 (±6.89)

+
Original

Braunvieh
Milk/Meat 19.33 (±6.48) 3.42 (±0.42) 4.01 (±0.57) 20.95 (±6.77)

□ Jersey Milk 18.88 (±6.10) 3.97 (±0.51) 5.30 (±0.94) 24.17 (±7.15)

Table 3.3: Annual milk performance average values for all breeds in the year 2023.

Table 3.3 summarizes the national average dairy performance metrics for 2023. These values match the

data reported by BLW (2023) and Schweizer Bauernverband (2024). In terms of milk yield, the Holstein

breed is distinguished by its superior milk and ECM performance, whereas the Jersey breed is recognized

for its elevated protein and fat yield. The latter characteristic is manifested in a comparatively greater

enhancement in ECM-corrected performance relative to other breeds. These values also reflect the major

characteristics of Swiss dairy farming presented in Chapter 2: The system is characterized by its familial

orientation, limited scale, pasture-based approach, with a pronounced emphasis policy on sustainability

and significant topological diversity. In particular, feeding practices are markedly different from those

employed by high-yield dairy enterprises in regions such as the United States.
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Breed # Samples # Farms # Animals Timespan

◦ Holstein 27’536’089 24’963 971’198 1985-2023

× Swiss Fleckvieh 31’484’784 27’392 1’038’291 1984-2023

△ Brown Swiss 56’695’579 26’585 1’719’156 1982-2023

♢ Simmental 8’731’867 19’411 299’698 1984-2023

+
Original
Braunvieh

4’996’060 18’613 149’478 1982-2023

□ Jersey 734’685 4’302 23’675 1998-2023

Total 130’179’064 46’975 4’201’494 1982-2023

Table 3.4: Dataset statistics: the cleaned dataset contains over 130 million samples from 4.2 million
animals distributed on almost 47 thousand farms between 1982 and 2023.

In Table 3.4, we summarize the sample distributions across breeds, farms and animals. The over 130 mil-

lion samples are not equally distributed among the breeds. Brown Swiss is leading with over 56 million

samples, followed by Swiss Fleckvieh with over 31 million samples. Holstein12 has about 27 million sam-

ples. Simmental and Original Braunvieh follow with 8.7 million and almost 5 million samples. For the

Jersey breed over 730’000 samples are available. On average, 30 samples per cow are available. Along

with the number of samples, we report the number of farms and animals as well as the time range covered

by the samples available. The overall dataset has samples from more than 4 million cows spanning a

time period of 42 years. The ratios between the number of samples, farms and animals reveal different

farm structures for the different breeds. Therefore, data subsampling strategies, if required, need to be

applied with care. Moreover, farms can host multiple dairy cow breeds.

Figure 3.1: Structure of our data: sparsity and dynamics. Farms enter and exit. Animals enter and exit.
Animals move. The sampling frequency is irregular.

Data Structure: Sparsity and Dynamics Figure 3.1 depicts the sparse structure and intrinsic dy-

namics of the dataset. We describe subfigures top down and from left to right. The initial subfigure

presents the distribution of samples across individual farms, indicating that the majority possess several

thousand samples. The subsequent distribution demonstrates the longitudinal data availability across

years for the farms, highlighting that some farms intermittently enter or exit the panel, while others con-

12 According to Holstein Switzerland, some data is irrecoverably lost.



Materials and Methods 19

tinuously contribute samples over nearly four decades. The third figure underscores the spatial dynamics

of livestock. We observe that most cattle are kept on the same farm. However, some cattle relocate, a

phenomenon attributable to seasonal pasture changes as well as commercial activities such as breeding

exchanges. The fourth figure elucidates the distribution of the number of samples collected over an ani-

mal’s lifespan or its tenure in the panel. The subsequent subfigure indicates that the majority of animals

are sampled over a period ranging from 2 to 5 years. Consequently, similar to farms, animals enter and

exit the panel. The final figure reveals that each year, only a limited number of samples are available

from the animals.

In conclusion, the dataset reflects actual agricultural practices and farm structures in Switzerland, rather

than being designed for controlled experimental studies measuring biological responses of dairy cows.

The data is primarily collected to monitor long-term breeding progress. Hence, the dataset is notably

sparse, in stark contrast to experimental research, where data collection from farms and cows occurs with

greater frequency and regularity. Addressing our research question necessitates a diverse set of THI data

points. When breeding associations conduct sampling on a farm, they sample all cows on the test day.

Consequently, on average, there are 7 weather data points recorded per cow, farm, and year. Therefore, a

representative sample covering a broad spectrum of THI data points requires data from at least hundreds

of farms and thousands of animals.

Figure 3.2: Structure of our data: time and seasonality. The figure illustrates the average daily milk
production per cow in Switzerland for the years 1990, 2000, 2010, and 2020.

Data Structure: Time and Seasonality The average milk yield per cow shows a continuous annual

increase. Figure 3.2 illustrates the average daily milk yield of cows recorded on the corresponding days

in the years 1990, 2000, 2010, and 2020 in Switzerland across all breeds. There is a notable increase in

daily milk production over the years attributable to advancements in breeding. Additionally, seasonal

fluctuations are apparent throughout each year. The minor spikes observed are a consequence of the

sampling strategies employed by breeding associations, as farms are sampled sequentially rather than

simultaneously. The peak of lactation occurs approximately in April and May, influenced by farm man-

agement practices. Seasonal calving during winter months results in lactation peaks during these months,

supported by the availability of high-quality grasslands in the spring season. Consequently, the reduced

milk yield observed during the summer months can be attributed not solely to heat stress, but also to the
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biological cycle, geospatial factors, farm management practices, and the availability of grassland. These

long-term and seasonal factors must be appropriately modeled to accurately assess the impact of the THI

on dairy performance.

Figure 3.3: Sample distribution for each dairy cow breed.

3.1.2 Geospatial Data
The milk data described in Section 3.1.1 is provided with anonymized farm metadata with associated ZIP

codes. In Switzerland, each ZIP code can be mapped to a locality. A locality is a geographically defined

area designated by an unambiguous place name and unique ZIP code. The ZIP belongs to one or more

political municipalities. The latter have a unique BFS13 number assigned by the Swiss Federal Statistics

Office. Since the locality distribution is more fine-granular than the political municipalities, we map each

farm to the closest geographical locality center. We count a total of 3194 localities. The geospatial data

and altitude raster grids are retrieved from Bundesamt für Landestopografie swisstopo (2024a,b). By

matching the locality data with the milk samples ZIP codes, we delineate the geospatial distributions

of samples per breed, as illustrated in Figure 3.3. The Simmental and Swiss Fleckvieh populations are

predominantly located in the Bernese Alps14, whereas the Holstein breed is primarily found in Western

Switzerland. In contrast, the Brown Swiss and Original Braunvieh breeds are more prevalent in eastern

Switzerland. The Jersey breed, however, demonstrates a more scattered geographical distribution.

3.1.3 Hydroclimatic Data
Meteorological variables such as daily mean, minimum and maximum temperatures in [°C], precipitation

[mm] and relative sunshine duration [%] are available as a gridded dataset from Chair of Hydrology

and Water Resources Management, ETH Zurich (2024) with a 1[km]x1[km] resolution. We allocate

13 Bundesamt für Statisik - Federal Statistics Office
14 We can also refer them as the ”typical” mountain cow breeds
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each ZIP code locality center to the nearest point within the gridded dataset. The relative humidity

is not available in gridded form. Nonetheless, the THI metric requires the relative humidity measure.

MeteoSchweiz (2024a) offers daily mean, minimum and maximum relative humidity for some weather

stations. We follow Bucheli et al. (2022a) and map available height corrected stations to the closest

height corrected locality centers with the following distance function:

ds,c =

√
(lats − latc)2 + (longs − latc)2 + (ψ · (alts − elevationc))

2
. (3.1)

The height correction is integrated in ds,c as a factor ψ = 100. This correction is applied because relative

humidity is more likely to vary with elevation changes than with horizontal movements. The temperature

varies with altitude and changes the saturation capacity.

((a)) 1982 - 159 Stations ((b)) 2023 - 540 Stations

Figure 3.4: Geographical weather station distribution with available relative humidity data.

We retrieve all daily mean, maximum and minimum relative humidity data available from the MeteoSuisse

portal from 1982 until the end of 2023. The following requirements for a station to be considered: First,

the station must not have more than 500 missing samples during its lifetime. We treat a station as

long as it exists as a fixed measurement point and do not control for technical changes such as hardware

upgrades, which increases risk of instrumentation bias. Under these constraints, 159 stations are available

in 1982 and 540 by the end of 2023. Figure 3.4 shows the weather station distribution in these two years.

The station concentration is increasing more in the alpine regions than in the Swiss plateau. During our

study period from 1982-2024, all major regions in Switzerland are equipped with weather stations, and

they increase in density over time.

3.2 Models
Informed by modeling elements derived from prior research, background information regarding dairy

farming in Switzerland, biological aspects, and the organization of our data, we establish an empirical

strategy. Then, we derive two model classes: single-breed models which are estimated with data for

each breed-separately, and multi-breed models which are estimated with data from all breeds together.

Single-breed models have lower complexity and are easier to estimate. However, this comes with statistical

challenges for model comparison. A multi-breed model that explicitly models the breed aspects introduces

more complexity and might be harder to estimate. However, in certain circumstances, this is more

appropriate for valid statistical comparisons between breeds.

3.2.1 Empirical Strategy
Our goal is to estimate the average effect of THI on cow-level dairy production performance variables

while controlling for breed, animal-physiological aspects, and other environmental effects such as farm

management practices, regulatory changes, and breeding progress. Hence, we need an additive statistical
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approach to separate the THI effect from these other factors. This requirement leads us to a model with

the following structure:

Variable of Interest = Weather + Controls + Unobserved Heterogeneity + Error. (3.2)

The variables of interest are the daily milk yield and daily ECM yield. To estimate the average effect of

weather, we need to model the THI as a component. We know from prior research that the effect of THI

on milk and milk component performance is non-linear. In our models, we will use the three-day mean

THI. This is the average THI value from the milk sample date t, t− 1 and t− 2:

3 Day Mean THI =
THIt + THIt−1 + THIt−2

3
, (3.3)

where t is the reported milk sample date and

THIt = (1.8 × Tt) + 32 − [(0.55 − 0.0055 × RHt) × (1.8 × Tt − 26)] . (3.4)

Tt and RHt are the mean temperature and mean relative humidity of day t.

We opt for the three-day THI mean based on several considerations: Firstly, when a farm is sampled,

cows are sampled in the morning and in the evening. These samples may either be collected on the

same calendar day or across two consecutive days when the samples are taken in the evening and the

morning of the following day. In the latter case, the sample date is recorded as the morning of the

subsequent day; this is irrespective of the first sample being taken the day prior. The specific sequence of

sampling for each set is not discernible within the dataset. Although such details are inconsequential for

practical breeding operations, they become critical when aligning milk sample data with meteorological

information. Consequently, it is imperative to account for weather conditions on the sampling day as

well as one day prior. Secondly, we incorporate an additional preceding day to address the lagged effect

of the THI on dairy cows. Currently, there is no standardized consensus on the number of lag days to

be considered. However, we have aligned our methodology with the approach delineated in Bryant et al.

(2007).

The model needs to control for the non-linear lactation curve of the cow. Right after calving, the milk

performance increases until it reaches a peak point before it drops again until the next dry period starts.

A viable proxy for this purpose is days in milk (DIM). Moreover, dairy performance also depends on the

the parity - we make a binary distinction between primi- and multiparous cows. Primiparous cows have

not developed their full biological potential and have a lower milk performance than multiparous cows.

Moreover, we also need to control for the within-year seasonality, geospatial differences, and long-term

effects such as breeding progress or regulatory changes. These aspects are motivated by the analysis of

effects observed in Figure 3.2.

The specific characteristics of the farm location, including the barn infrastructure, the topographical

features and the management strategies, cannot be explicitly measured. We assume farmers constantly

adapt and change their best practices. Similarly, the fundamental performance attributed to the genetic

and phenotypic attributes of individual cows cannot be directly observed. It is imperative to account for

this latent heterogeneity.

3.2.2 Single Breed Model
We first introduce a single breed model before expanding it in the next section. Let yijkt be a dairy

performance variable of a sample of animal i, at the farm location j, at farm k and at the sampling

date t. Equation 3.5 defines an additive mixed model to estimate the average effect of THI on milk

performance variables. The coefficient β0 is the intercept which represents the mean performance of the

given breed data, excluding all other factors included in the model. I(Primiparousi) is the indicator

variable whether the current cow i is primi- or multiparous. THIkt is the three-day mean THI at the
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farm location k at the sampling date t. THI is modelled as a separate non-linear function f1,1 and

f1,2 for primi-and multiparous cows. DIMit is the days milk of the cow i sampled on day t. Following

the same analogy as for THI, DIM is also modelled separately as a non-linear function f2,1 and f2,2

for primi- and multiparous cows. β1 is the fixed effect coefficient for being primiparous compared to

multiparous. I(Yeart = m) is a variable indicating whether the sampling date t falls in the year m, where

M is the set of years covered by the samples included. β2,m is the effect of year m compared to the

reference year. ιkt is the random intercept for ZIP of farm k and month of the sample date t. This

random effect models the annual seasonality accounting for geospatial differences; due to the topological

heterogeneity of Switzerland, timing and farming practices might vary. For example, in high-altitude

regions the grazing season might start later than in the Swiss Plateau. Another aspect which is covered

by this random intercept are spatial spillovers. Neighbouring farmers might apply similar practices

simply due to geospatial constraints but also due to networking effects (Young and Coleman, 1959). The

factor levels for this random intercept are created with a ZIP code - month interaction term. The ZIP

code is a natural choice originating from our farm-ZIP code matching introduced in Section 3.1 and the

monthly granularity is justified by the monthly sampling frequency by the breeding associations15. ϕk is

the random intercept for the location of farm k. First, since different farms have unique characteristics

such as soil, land or barn we capture the variability between farms. Moreover, Figure 3.1 shows us the

hierarchical structure of the data. Grouping within entities such as farms needs to be taken into account

in the model. With our data we cover very long periods of time. Farmers constantly adopt and change

their practices over time. Some of the long-term national average aspects are captured by the Year fixed

effect. The constant individual adaptation by each farmer is not explicitly modelled. Consequently, the

effects f(THI) and f(DIM) are, at least in part, implicitly reflective of adaptive changes. Additionally,

each individual cow i is incorporated as a random intercept α to account for repeated sampling per cow

and distinctive animal characteristics. The residual error term is denoted by ϵijkt.

Definition 3.2.1. Single Breed Model - Extended Notation

yijkt = β0

+ f1,1(THIkt) · I(Primiparousi)

+ f1,2(THIkt) · (1 − I(Primiparousi))

+ f2,1(DIMit) · I(Primiparousi)

+ f2,2(DIMit) · (1 − I(Primiparousi))

+ β1 · I(Primiparousi)

+
∑

m inM
β2m · I(Yeart = m)

+ ιkt

+ ϕk

+ αi

+ ϵijkt

(3.5)

In Equation 3.6 we provide a simplified notation for the model introduced in Equation 3.5 solely focusing

on the covariates and not their coefficients.

Definition 3.2.2. Single Breed Model - Simplified Notation

y = µ+ f(THI) · P + f(DIM) · P + P + Y + ι+ ϕ+ α+ ϵ (3.6)

15 Both of these hyperparameters are somewhat arbitrary and could be optimized in a model selection process.
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The variable y denotes the dependent dairy performance variable. The parameter µ serves as the overall

intercept of the model. The function f(THI) is a non-linear function relating to the THI. Likewise,

f(DIM) is a non-linear function that models the lactation curve. The variable P signifies parity, repre-

senting a binary distinction between primiparous and multiparous cows. The term Y symbolizes the year

as a categorical variable, capturing potential year-to-year variations. The random intercept ι accounts for

variation linked to the zip code by month, reflecting geographic and seasonality. The random intercept ϕ

pertains to the farm location, managing variability across different farms and sampling sites. The random

intercept α addresses the variability among individual cows. Lastly, ϵ denotes the residual error term of

the model.

3.2.3 Mutli-Breed Model
Our hypothesis posits varying effects of THI on dairy performance across different breeds. Consequently,

our aim is to determine whether there are statistically significant heterogeneous treatment effects. The

treatment under consideration is the exposure of cows to weather (THI), while the heterogeneity arises

from the various dairy cow breeds. Dividing the data based on breed and estimating separate models

for each breed is appealing for reducing modeling complexity; however, challenges may arise if not all

covariates are interacted with breed in a multi-breed model, since statistical significance is contingent

upon all covariates (Le, 2020). With biological reasoning, it is justifiable to consider separate intercepts

as well as interaction terms involving f(THI), f(DIM), parity, and year. The interaction of random effects

for seasonality and location by breed requires further investigation. The central question pertains to

whether we should assume a common biological response across breeds with respect to location and farm.

Given that each cow is associated with a single breed, it should not matter whether the random intercept

for cow αi is interacted by breed or not. An example multi-breed models following the arguments above

is

Definition 3.2.3.

yijkt =
∑
b∈B

β0,b · I(Bi = b)

+
∑
b∈B

[f1,1,b(THIkt) · I(Primiparousi) · I(Bi = b)]

+
∑
b∈B

[f1,2,b(THIkt) · (1 − I(Primiparousi)) · I(Bi = b)]

+
∑
b∈B

[f2,1,b(DIMit) · I(Primiparousi) · I(Bi = b)]

+
∑
b∈B

[f2,2,b(DIMit) · (1 − I(Primiparousi)) · I(Bi = b)]

+
∑
b∈B

[β1,b · I(Primiparousi) · I(Bi = b)]

+
∑

m∈M
β2m · I(Yeart = m)

+ ιkt

+ ϕk

+ αi

+ ϵijkt,

(3.7)

where B is the set of available breeds and Bi a binary indicator for breed.
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3.2.4 Model Estimation Strategy
Given the presence of repeated unbalanced measurements for cows and farms as illustrated in Table 3.4

and Figure 3.1, the application of mixed models with maximum likelihood estimation is deemed appro-

priate for our model estimation (Wood, 2017, page 61 and 74). Various methodologies exist to model the

non-linear components f , such as binning, piecewise regression (broken stick), or splines. The contempo-

rary approach for estimating non-linearities is through smooth terms, which can be implemented within a

Generalized Additive Model framework (Wood, 2017, Chapter 5 and 6). Smooth terms, being splines with

penalized coefficients, facilitate a more accurate representation of the data. Consequently, we characterize

our nonlinear functions f as smooth terms. The components of our models are a combination of smooth

terms, fixed effects, and random effects, thereby constituting Generalized Additive Mixed Models (Wood,

2017, page 288). To address our research question with an estimated model, we numerically derive the

turning points in the smooth terms f . We use mgcv (Wood, 2011; Wood et al., 2016; Wood, 2003, 2017;

Wood and Scheipl, 2020) for estimation and gratia (Simpson, 2024) for the turning point search. This

purely data-driven approach for inflection point determination is a considerable improvement compared

to previous works which make preliminary assumptions about the non-linearities. Implementation details

and library modifications required for our data are discussed in the following sections.

3.3 From Linear Mixed Models to Generalized Additive Mixed Models
To link our model definitions in Section 3.2 with the GAMM framework, we provide the basics around

mixed models, GAMs and GAMMs and explain how they are linked. Understanding the relationship

between these three frameworks is vital for a successful and computationally efficient estimation of Equa-

tion 3.5 and Equation 3.7.

3.3.1 Generalized Linear Mixed Models
We use the definitions from Wood (2017) and Bates et al. (2015) to introduce mixed models. Let y ∈ Rn

be the response data of n samples from a random variable Y belonging to the exponential family. Let

g(µi) = Xiβ, where µi ≡ E(Yi), g is the link function, Xi is the i-th row of the model matrix X ∈ Rn×p

and β ∈ Rp the vector of the p fixed effect parameters. The response variable samples yi are assumed to

be independent and have a distribution that belongs to the exponential family. Let Zi be the i-th row of

the random effect model matrix Z ∈ Rn×q , and let b ∈ Rq be the q-dimensional random vector from a

random variable B ∼ N (0,ψθ) containing random effects with zero expected value and covariance matrix

ψθ ∈ Rq×q with unknown parameters θ. Let Λθ ∈ Rn×n be the residual covariance matrix to model

the residual autocorrelation. We assume that the residuals are distributed independently and identically.

Hence, Λθ = Iσ2. This simplification comes with computational advantages, but also with modelling

drawbacks regarding spatial autocorrelation in our data.

For the Gaussian case, a Linear Mixed Model (LMM) is defined as

Definition 3.3.1. Linear Mixed Model

y = Xβ + Zb+ ϵ, b ∼ N(0,ψθ), ϵ ∼ (0,Λθ) = N(0, Iσ2), (3.8)

where y ∼ N(Xβ,ZψθZ
T + Iσ2) and (Y |B = b) ∼ N (Xβ + Zb, σ2I).

The extension of an LMM to non-normal data is given as the Generalized Linear Mixed Model (GLMM)

with
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Definition 3.3.2. Generalized Linear Mixed Model

g(µ) = Xβ + Zb, b ∼ N (0,ψθ), (3.9)

where (Y|B = b) ∼ D(g−1(Xb+Zb), ϕ) and B ∼ N (0,ψθ). D is the distribution of the exponential family,

and ϕ is a common scale parameter. The error term in Equation 3.8 comes from the normal distribution

of the response variable Y. The remaining variability is related to the assumed distribution D. Therefore,

no explicit error term ϵ is available in the generalized case.

3.3.2 Generalized Additive Models
Generalized Additive models are a flexible generalization of linear models accommodating non-linear rela-

tionships between predictors and outcome variables through smooth terms. The smooth terms enable us

to capture these non-linear relationships without further specifying the non-linear structure in advance.

The additive principle between the individual effects remains as in regular linear regression models. In

addition, GAMs incorporate different link functions to support different types of response variables with

various distributions from the exponential family.

In contrast to the fixed effect model matrix X in Sec. 3.3.1 we introduce a model matrix X∗ for the

strictly parametric part, where X∗
i is the i-th row of this design matrix. The corresponding parametric

vector is defined as β∗. Let fj be the smooth function of the covariates xj , where a smooth function

fj may be a function of one or more covariates (Wood, 2017, 2004). The matrix xj ∈ Rn×|fj | comprises

samples for the covariates assigned to the smooth fj . Therefore, the smooth components may be uni- or

multivariate. This leads to the definition of a GAM as the sum of smooth functions given by

Definition 3.3.3. Generalized Additive Model

g(µi) = X∗
i β

∗ + f1(x1i) + f(x2i) + . . . , (3.10)

where some or all covariates are represented with a smooth term. The smooth terms can be understood

as a basis expansions for the associates covariates, where the smoothness is controlled by penalty terms.

A common way to fit GAMs and choose the appropriate smoothness are likelihood maximization methods

such as the Restricted Maximum Likelihood Method (REML) (Corbeil and Searle, 1976).

3.3.3 Generalized Additive Mixed Models
There is a mathematical equivalence between smooth terms and random effects (Wood, 2017, p. 239).

Simple random effect structures Z with random intercepts and random slopes can be defined as smooth

terms fj(zj) and are fitted with gam by default or bam for large datasets (Wood et al., 2015; Wood,

2023). Equation 3.11 illustrates this equivalence. Hence, a GAM with random effect structures, a

generalized additive mixed model (GAMM), can be represented and fitted in the form of a GAM defined

in Equation 3.10. Further implementation details for random effects as smooth terms are available in

Wood (2024). These are not further discussed in the scope of this work.

Definition 3.3.4. Generalized Additive Mixed Model

g(µi) = X∗
i β

∗+f1(x1i)+f(x2i)+ · · ·+Zib ≡ X∗
i β

∗+f1(x1i)+f(x2i)+ · · ·+f1(z1i)+f(z2i)+ . . . , (3.11)

Random effect structures often come with sparsity. The aforementioned default implementations do not

take advantage of this sparse effect structure. For a modest number random effects these methods are still

computationally appealing. However, mgcv is not optimized for a growing number of group factor levels

for random effect structures. Brooks et al. (2017) highlight the exponentially growing estimation time
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with a growing number of random effect levels using the default routines in the aforementioned library.

For a large number of random effect factor levels, the duality principle between GAMs and GLMMs

permits the reformulation of a GAMM as a GLMM. Let fj be the vector of a smooth from a sample i,

fij = f(xij). Each smooth term has one or more basis functions. The collection of basis functions within

a smooth can be interpreted as a vector.

In the mixed model form fj = X′
jβ

′
j +Z′

jb
′
j , where b′j ∼ N (0, Iσ2

bj
). The columns of X′

j are a null space

basis of the smoothing penalty. Equivalently, the columns of Z′
j are the range basis. More specifically,

each smooth term corresponds to a fixed effect part X′
j and a random effect part Z′

j . Let X′
Σ be the

combined effect concatenated from the individual smooth fixed effects X′
j and Z′

Σ the combined smooth

term random matrix concatenated from the individual Z′
j . Hence, generalizing to an arbitrary number

of smooths, a GAMM as a GLMM is defined as

Definition 3.3.5. Generalized Additive Model as Generalized Linear Mixed Model

g(µi) = X∗
i β

∗ + f1(x1i) + f(x2i) + · · · + Zib ≡ X∗
i β

∗ + X′
iΣβ

′
Σ + Z′

iΣb
′
Σ + Zib. (3.12)

The individual fixed effect terms X∗
i β

∗ +X′
iΣβ

′
Σ and the individual random effect terms Z′

iΣb
′
Σ +Zib in

Equation 3.12 can be concatenated into one fixed effect and one random effect structure as in Equation 3.9.

This concludes our definition of GAMMs as mixed models. In R, gamm(Wood, 2023) and gamm4 (Wood

and Scheipl, 2020) are the available routines for estimating GAMs with mixed models engines. gamm

uses nlme (Pinheiro et al., 2017) and gamm4 uses lme4 (Bates et al., 2015) as the underlying engine.

3.4 Estimating Generalized Additive Mixed Models
In Section 3.1.1 we discuss the sparsity of our data. Estimating our model with cows and farms as random

intercepts for representative subsamples covering a broad range of weather data points results in tens of

thousands of random effect factor levels. Therefore, the default methods gam and bam are computation-

ally not appropriate for estimations with reasonable model fitting times and memory consumption. This is

because the sparse structure of random effects is not leveraged when using the random-effect-as-smooth

approach given in Equation 3.11. In the following Section 3.4.1, we briefly discuss some subsampling

strategies with which we experiment to potentially circumvent these limitations, before discussing other

off-the-shelf approaches. Since these are not successful, we discuss the development of an appropriate

alternative method in detail in the last subsection. All experiments in this study are performed on a 32

core machine with 512 GB of RAM.

3.4.1 gam and bam
We explore various variants of the multi-breed model as delineated in Equation 3.13 by employing different

subsampling methodologies.

Definition 3.4.1. Multi-Breed Model for bam and gam Experiments

milk = µ+B + f(THI) ×B + DIM×B + P + Y + ϕ+ α+ ϵ. (3.13)

Model 3.13 represents a simplification of the multi-breed model proposed in Equation 3.7. The term

‘different variants’ pertains to experiments involving diverse breed interaction terms, varying smooth

terms, and the interaction of farm intercepts with ZIP codes ϕ. We refrain from providing an exhaustive

list of options due to the recurrent challenges we encounter: Firstly, with a limited number of samples,

the smooth terms, upon visual inspection, appear biologically nonsensical. Secondly, increasing the

sample size leads to a substantial rise in model estimation time and the computational load of the

summary function. Thirdly, memory constraints become apparent when the sample size is excessively
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large. Fourthly, while simplifying the model by removing random effect terms like the animal intercepts

permits the estimation of models with larger sample sizes, the resultant smooth terms remain biologically

unintelligible. Fifthly, we implement several subsampling techniques to curtail the number of farms and

animals considered, while retaining geospatial diversity and ensuring adequate breed representation.

In all scenarios, the models either fail to converge, encounter memory issues, or yield meaningless out-

comes. A sampling strategy suggested by the ETH Statistical Consulting Service involves selecting a

single sample per farm and omitting the modeling of animal random intercepts. Theoretically, given

the extensive number of farms in our dataset (Table 3.4), the quantity of data points should suffice

for modeling the smooth terms. Additionally, this method could potentially alleviate violations of iid

error term assumptions and spatial autocorrelation challenges. Nevertheless, even with this approach,

obtaining biologically meaningful smooths remains elusive. While adhering to the research objective of

estimating smooth terms to ascertain the non-linear impact of THI, we resolve to investigate alternative

methodologies such as gamm4.

3.4.2 gamm4
gamm4 estimates GAMs as mixed models with lme4 as the underlying engine which has sparse matrix

support and is known to be efficient. The gamm4 routine performs three steps: First, in the pre-

processing phase, a GAMM model is converted into a GLMM. Second, in the fitting-phase, the parameter

estimation is executed with the lme4 engine. Third, the estimated parameters are re-transformed into a

GAM specification, and the confidence intervals for the smooth terms are estimated. This step is crucial

for practical purposes and allows the fitted model to be treated as a regular GAM for downstream model

analysis, diagnostics, as well as inference.

We run several experiments to assess the performance of gamm4 for a single breed model with the Jersey

data:

Definition 3.4.2. Simple Single Breed Model for gamm4 Performance Assessment

milk = β0 + f(THI) + β1 ·DIM + β2 · P + Y + ϕ+ α+ ϵ. (3.14)

Table 3.5 illustrates that the estimation times rise as the levels of random effect factors increase. Unlike

the subsampling experiments and modeling trade-offs using gam and bam outlined earlier, gamm4 enables

us to achieve biologically meaningful outcomes, evidenced by the visual credibility of the smooth terms

for THI, especially for the last experiment listed. This observation provides us some indication about the

number of samples required to build accurate multi-breed models.

The model used for this experiment does not correspond to a mature single-breed model and is designed

primarily for performance assessment purposes. For example, modelling the DIM as a fixed effect instead

as a smooth term, or interacting farms with the month of the year, are limitations. The main goal

of this comparison is to emphasize the performance implications of varying factor levels. This analysis

reveals the computational difficulties to be encountered as the number of samples and factor levels grow,

particularly with larger and more representative data subsets or multi-breed models. Simple experiments

with multiple breeds over a million of samples explode in execution time or fail with memory errors

during a Cholesky decomposition step.

# Samples # Cows α # Farm × Month ϕ Fitting Time [s]

175’346 24’170 10’000 342
259’088 25’433 15’000 822
426’397 26’201 25’000 2’332
660’110 26’641 39’223 5’447

Table 3.5: gamm4 execution times with a growing number of samples
and random effect factor levels.
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3.4.3 MixedModels.jl
An alternative mixed model library to lme4 is MixedModels.jl implemented in Julia in contrast with

previous libraries that use R. The latter is notably faster16 than lme4 (Markwick, 2022). GAMs cannot

be estimated with the default MixedModels.jl interface. However, the mechanisms implemented in gamm4

could be modified to execute the model fitting step with the high-performance and memory-efficient Julia

library. To assess if MixedModels.jl is suitable and scales with our data, we perform an experiment with

the following model inspired by Bryant et al. (2007):

Definition 3.4.3. Multi-Breed Model for MixedModels.jl Performance Assessment

milk = β0 +

nB∑
i=1

β1i ·Bi +

nY∑
k=1

β2k · Yk + β3 · P +

nB∑
i=1

β4i · (Bi × THI) +

nB∑
i=1

β5i · (Bi × THI2)

+

nB∑
i=1

β6i · (Bi ×DIM) + α+ ϕ+ ϵ,

(3.15)

where nB is the number of breeds and nY the number of years.

# Samples Breeds # Cows # Farm × Month Fitting Time [s]

660’110 JE 26’641 39’223 580
7’381’552 HO, JE, SF, SI, BS, OB 1’833’470 106’642 15’231

Table 3.6: MixedModels.jl execution times with a Jersey only model and a six-breed model. The
Jersey model is fitted without the THI2 term.

Table 3.6 shows the model estimation times for two data subsets. These results confirm the scalability

assumption for MixedModels.jl with millions of factor levels with acceptable execution times and low

memory consumption17. With the goal to fit a multi-breed GAM, with millions of samples, we decide to

modify gamm4 and replace the lme4 estimation engine with MixedModels.jl.

3.4.4 Putting it all together: gamm4 Modifications
In order to overcome challenges described in previous subsections, we study the libraries and identify

opportunities for their enhancement and combination to achieve our goals.

gamm4 implements the GAMM mixed model equivalence described in Equation 3.12. During our source

code analysis, with the goal to understand how to translate a mixed model prepared for lme4 to a

MixedModels.jl format, we discover bottlenecks during the pre- and post-processing phases in gamm4.

Therefore, we develop two distinct modified library versions: A first version, gamm4b, which fixes bot-

tlenecks during the pre-and post-processing phases and still estimates the model parameters with lme4.

A second version, gammJ which modifies the pre-processing to estimate the parameters with a modified

version of MixedModels.jl and also further optimizes the post-processing steps. A modified MixedMod-

els.jl is required to support the mixed model structures generated by Equation 3.12. To summarize, the

artifacts of our effort to accommodate a larger number of factors levels in GAMMs are threefold: First,

the bug-fixed and accelerated gamm4 library, which we refer to as gamm4b. Second, the gammJ proto-

type which executed the model fitting in a modified MixedModels.jl. Third, the modified MixedModels.jl

which supports a broader set of mixed models than the default version. These three contributions must

be considered as prototypes.

16 According to ETH Statistical Consulting up to 100 times faster
17 memory consumption at Gigabytes for the process - htop observations during runtime - no systematic profiling
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3.4.4.1 gamm4b

In this section, we summarize the three major modifications to gamm4 while still using lme4 as the

underlying mixed model parameter estimation engine. We plan to share these modifications with the

authors of Wood and Scheipl (2020) since these are relatively simple but powerful changes to the existing

gamm4 source code, assuming a setup with R and Python is available.

Random Effect Matrix Substitution Process When a smooth term fj is converted to its fixed effect

part X′
j and the random effect part Z′

j, the number of columns in the random effect matrix depends on

the number of basis functions of the smooth j. lme4 ’s regular user interface does not support arbitrary

random effect matrices. They are generated by R’s formula interface for particular random intercept

and random slope structures. Hence, the random effect matrices Z generated with this interface do

only over a subset of models which could be fitted with the underlying engine. The latter supports a

broader set of random effect matrices18, including the Z′
j generated by the GAMM to GLMM model

conversion. In gamm4 the following trick is applied: Consider each smooth term as a random intercept

with k factor levels, where k is the number of basis functions for the given smooth. The lme4 model

building process then allocates the corresponding columns in the Z matrix with a regular binary random

intercept structure. Then replace the corresponding columns in the generated Z with the Z′
j from the

smooth to random effect conversion. This replacement process, a sparse matrix substitution, is extremely

inefficiently implemented and is a limitation of Bates et al. (2024). The performance impact becomes

noticeable when fitting models with hundreds of thousands of samples with tens of thousands of random

factor levels, where this step takes up to thousands of seconds in our debugging analysis. Our first

contribution to gamm4b is a more efficient implementation of this sparse matrix substitution process.

More specifically, lines 225 - 235 of the gamm4 source code are replaced.

Default Optimizer Parameter Bug Fix During our gamm4 dissection process, we discover a pa-

rameter error on the gamm4 source code line 237. A custom optimizer parameter passed to the gamm4

routine is not properly passed to the underlying fitting engine. This discovery is made because during

the gammJ (Section 3.4.4.2) development we use gamm4 as a reference implementation to compare the

estimated parameters with the estimates in MixedModels.jl. Generally, we use the BOBYQA optimizer

(Powell, 2009) in all our experiments. Presumably, this is also the default optimizer in lme4. However,

we observe differences in the estimated parameters and debugging outputs when we do not specifically

pass ”bobyqa” as the optimizer argument in lmerControl .

Post-Processing Cholesky Decomposition Using our GAMM definition from Equation 3.12, let Z

be the random effects model matrix of the non-smooth terms and let ψθ be the corresponding random

coefficient matrix associated with the estimated random effect parameters. The post-processing step to

fully represent the fitted GLMM as a GAM includes the computation of the data covariance matrix

V = Zψθ Z
⊤ + Iσ2. (3.16)

The inverse of V, V−1 is used for further downstream computations. V ∈ Rn×n is growing quadratically

with the number of samples. (Wood, 2017, page 289) warn about the computational complexity and

advise to leverage the special structure of V. Since V is symmetric and positive-definite, a Cholesky

decomposition can be applied. gamm4 implements a Cholesky decomposition on line 374 with function-

ality from the Bates et al. (2024) library. The construction of V and the computation of its Cholesky

decomposition do not scale well with our data. We replace the Cholesky decomposition with a Python

call (Ushey et al., 2024) to the Cholmod (Chen et al., 2008) function of scikit-sparse to overcome this

18 Further specifications about potential constraints are out of scope for this work.

https://github.com/cran/gamm4/blob/master/R/gamm4.r
https://search.r-project.org/CRAN/refmans/lme4/html/lmerControl.html
https://github.com/scikit-sparse/scikit-sparse
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limitation. In our experiments, with this modification, we can estimate GAMMs up to a sample size

up to approximately 500’000 to 750’000, depending on the exact random effects structure. Larger sizes

lead to memory allocation problems in R because the sparse matrix indexing in Bates et al. (2024) only

supports 32-bit indexes, which is not sufficient with our size of V. This further motivated the exploration

of Julia software packages to avoid the limitations of R libraries.

3.4.4.2 gammJ

With gammJ we fit GAMMs as mixed models in a modified MixedModels.jl and apply further optimiza-

tions to operations related to the data covariance matrix introduced in Equation 3.16. These modifications

further accelerate the estimation process and remove the matrix 32-bit indexing issues described in Sec-

tion 3.4.4.1. In Section 3.4.4.3 we describe our modifications applied to MixedModels.jl to accommodate

GAMMs as GLMMs. In Section 3.4.4.4 we specify implementations details for operations related to V.

3.4.4.3 Extended MixedModels.jl to support GAMMs as GLMMs

MixedModels.jl is very similar to lme4 and is partially developed by the same authors (Bates et al., 2015;

JuliaStats, 2024). However, the library is faster in many scenarios because the implementation leverages

particular matrix structures and optimizes the corresponding operations. A key equation for estimating

the mixed effect problem as given in Equation 3.8 and Equation 3.9, is the Cholesky decomposition given

in Bates et al. (2015, page 14, equation 18):[
Λ⊤
θ Z

⊤WZΛθ + I Λ⊤
θ Z

⊤WX

X⊤WZΛθ X⊤WX

]
=

[
Lθ 0

R⊤
ZX RX

][
L⊤
θ RZX

0 RX

]
= LL⊤. (3.17)

As previously defined in Equation 3.8 and Equation 3.9 the matrix Z is the random effects design matrix

while X is the design matrix for the fixed effects. The relative covariance factor Λθ represents a block-

diagonal matrix that consists of blocks associated with the variance components of the random effects.

Each block Λi corresponds to a specific random effect term and is a function of the parameter vector

θ, which defines the random effects’ variance structure. W is a diagonal weight matrix, typically I.

Lθ is the lower triangular Cholesky factor of Λ⊤
θ Z

⊤WZΛθ + I and plays a crucial role in simplifying the

computation of the variance components during the estimation process. RZX = X⊤WZΛθ describes

the interaction between the fixed and random effects. Finally, RX is the upper triangular Cholesky

factor of the fixed-effects cross-product matrix X⊤WX. All these matrices work together and enable the

estimation of both fixed and random effects in the model. The curious reader is invited to consult Bates

et al. (2015) for more details on the meaning of the individual matrices in Equation 3.17.

The random effects matrix Z has a blocked structure if there are multiple random effects such as cows

and farms in our case. Moreover, depending on the nature of the individual random effects or slopes, the

entries of the individual matrix blocks can be as simple as binary for random intercepts or real numbers for

slopes. In many cases, the blocks are sparse. MixedModels.jl optimizes for many of these aspects. Let us

consider a model with q random effects, resulting in a random effects matrix Z =
[
Z1 Z2 . . . Zq

]
and

the corresponding relative covariance factor Λθ = diag
(
Λθ1 ,Λθ2 , . . . ,Λθq

)
, both with q blocks. Expanding

the left-hand side of Equation 3.17 leads to


Λ⊤
θ1
Z⊤

1 WZ1Λθ1 + I1 . . . Λ⊤
θ1
Z⊤

1 WZqΛθq

...
. . .

...

Λ⊤
θq
Z⊤

q WZ1Λθ1 . . . Λ⊤
θq
Z⊤

q WZqΛθq + Iq




Λ⊤
θ1
Z⊤

1 WX
...

Λ⊤
θq
Z⊤

q WX


[
X⊤WZ1Λθ1 . . . X⊤WZqΛθq

]
X⊤WX

 . (3.18)

L of the right-hand side of Equation 3.17 expands to
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L =




Lθ1 0 . . . 0

L21 Lθ2 . . . 0
...

...
. . . 0

Lq1 Lq2 . . . Lθq

 0

[
X⊤WZ1Λθ1 . . . X⊤WZqΛθq

]
RX


, (3.19)

where the top-left block is the lower triangular Cholesky factor Lθ of the block random effects matrix.

This block matrix consists of the Cholesky factor Lθi of each block Λ⊤
θi
Z⊤

i WZiΛθi + Ii and the Cholesky

factor Lij of the cross terms between different random effects blocks Λ⊤
θi
Z⊤

i WZjΛθj . The top-right

block is 0 because the lower triangular matrix has zeros above the diagonal. The bottom-left block

contains the interactions between the fixed-effects design matrix and the random effects blocks, i.e.,

R⊤
ZX =

[
X⊤WZ1Λθ1 . . . X⊤WZqΛθq

]
. The bottom-right block RX is the Cholesky factor of the

fixed-effects design matrix cross-product X⊤WX.

The different Zq have different structures depending on the model definition. For example if a block Zq

corresponds to a random intercept, the columns of the matrix are indicator columns and the operation

Z⊤
q Zq leads to a block diagonal matrix. MixedModels.jl supports different Zq blocks structures and

implements optimized matrix operations between them, accounting for all possible term interactions

resulting from Equation 3.18. However, the block structure Z′
j resulting from a smooth term from

a GAMM to GLMM conversion and the corresponding matrix multiplications are not supported in

MixedModels.jl. Our extension adds this block type, referred as FlexReMat type in our source code,

and the associated matrix operations. Some sparse matrix operations are not fully optimized in our

implementation, and open opportunities for additional improvements. Moreover, at the current stage,

tests have only been executed for REML and the Gaussian family with the identity link function.

3.4.4.4 Scalable Cholesky Decomposition of Data Covariance Matrix

To overcome the computational limitations presented in Section 3.4.4.1 of the data covariance matrix V

operations we implement a scalable Julia version with the latest high-performance sparse matrix library

SuiteSparseGraphBlas.jl (Davis, 2022, 2019; Pelletier et al., 2021) and CHOLMOD operations (Davis

and Hager, 2005, 1999; Chen et al., 2008; Davis and Hager, 2009). The operations are fast, but memory

intensive. With sample sizes above 1’100’000-1’500’000, depending on the complexity of the random ef-

fect structures, we encounter the memory limitations of our computational resources during the Cholesky

decomposition because the sparse matrix V has billions of non-zero entries, which hinders us from es-

timating multi-breed models with meaningful sample sizes and remains an interesting area for future

work.

Dataset Samples Breed # Cows # zip × month # Farms Total Factor Levels

1 500,027 JE 17,555 13,818 2,966 34,339
2 1,000,000 HO 50,111 7,666 1,064 58,841

Table 3.7: Subsampled datasets for gamm4, gamm4b and gammJ performance comparison.
Dataset 1 are randomly selected farms with the Jersey breed and dataset 2 are randomly
selected farms with the Holstein breed.

3.4.4.5 Performance Comparison - gamm4, gamm4b, gammJ

Finally, to compare the performance between gamm4, gamm4b and gammJ we use the following single-

breed model given in Equation 3.6 with two example datasets described in Table 3.7. The differences in

the number of factor levels between the two datasets emphasize the structural distinctions between farms

with the corresponding breeds. For example, farms with Holsteins have more cows and, therefore, more
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samples per animal than farms with Jerseys.

Dataset gamm4 gamm4b gammJ

1 15’097 4’758 1’863
2 Crash Crash 1’646

Table 3.8: Comparison of gamm4,
gamm4b and gammJ estimation times in
seconds with datasets listed in Table 3.7.

Table 3.8 presents the different estimation times within our environment. With the first data set, we

observe an 8x speed-up when comparing gamm4 with gammJ. Nonetheless, the performance boost by

gamm4b is considerable as well. Furthermore, with the second example dataset, we are unable to retrieve

a model with gamm4 and gamm4b. In both cases, the process can fit the model, but the post-processing

operations related to the computation or Cholesky decomposition of V fail because of the limitations

discussed in Section 3.4.4. Despite the higher number of samples, the gammJ execution time is faster

for the second dataset because the random intercept structure is less complex than for the first dataset.

However, as mentioned in Section 3.4.4.3, some sparse matrix operations for certain block structures

could be further optimized and further boost gammJ ’s performance.

With this framework and our available computational resources, we are able to estimate single breed

models with reasonable execution times, memory consumption, more random effect factor levels, and

more samples than possible with the default gamm4 implementation.



4
Results

We estimate the single-breed model proposed in Equation 3.6. The applied estimation engine is gamm4j

which we introduced in Section 3.4.4.2. For each breed, data is subsampled from our dataset presented

in Table 3.4. The subsamples are generated by picking all samples from randomly selected farms until a

sample threshold ts is reached. ts is determined by our available computational capacities. This resource

limitation is discussed in Section 3.4.4.4. We deliberately select all available samples from each randomly

chosen farm in order for the model to implicitly incorporate the structural characteristics of the dairy

farm and cow herd. Initially, we conduct the analysis on subsamples spanning the entire study period

which is our primary focus. Then, we divide the data into two distinct periods, prior to and subsequent

to 2010 and briefly describe the results in Section 4.4. This data split is justified by previous work

from Gisbert-Queral et al. (2021) and also motivated by potential changes in the cows’ thermoregulatory

mechanisms due to breeding, or the abolition of milk quotas (Table 2.3).

How to read the figures? The following sections and subsections will systematically highlight the

effect of THI on milk yield and ECM yield across breeds with one class of figures. On these figures, the

abscissa represents the 3-day mean THI, while the ordinate indicates the milk performance metric, either

milk yield or ECM yield. Each breed is denoted by a unique color and symbol, as outlined in Table 3.4.

The main objective of this study is to identify the THI turning point for each breed. Consequently, each

curve’s turning point, also referred as THI threshold or inflection point, is marked by a vertical line,

accompanied by the corresponding THI value. In certain instances, a numerically derivable turning point

is not achievable, as the slope of the curve does not transition from positive to negative derivatives, or

vice versa. One category of figures compares breeds, including averages of the corresponding breed and

parity, while another exclusively examines the marginal effects. The reader is strongly advised to refer

to the THI table in Figure A.1 to facilitate the comprehension of this chapter.

How to read the tables? In addition to the figures, we report tables with model specifics and principal

results. The initial column in each table furnishes a reference to the model’s section within the appendix.

The first category of tables is devoted to technical model details, encapsulating the number of samples N ,

random effect factor levels for farms ϕ, ZIP-month interactions ι, and animals α, as well as the number

of basis functions K pertinent to the smooth terms associated with THI and days in milk DIM , along

with the actual estimated degrees of freedom EDF . The table is complemented with the time required

for the model estimation with gammJ. Entries necessitating a distinction between primiparous P and

multiparous cows M are reported accordingly.

The second category of tables summarizes the content depicted in the figures, such as the THI turning

points, if available, alongside the corresponding loss rates. The loss rates delineate the linear gradient

between the THI turning point and the THI value belonging to the furthest rightmost datapoint available
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for the particular slope. Hence, they are a linear approximation of the non-linear marginal effect. If no

turning point is available, no loss rate is provided. Given that the lactation curves f(DIM) are also

smooth terms, the determination of lactation peaks utilizes the same numerical methodology as that

employed for f(THI). Hence, we report the turning points for the lactation curves, albeit without

further discussion. Furthermore, for each model, the marginal and conditional R2 are reported according

to the formulas in Nakagawa and Schielzeth (2013, Equation 29 and Equation 30).

Model Details The Appendix D provides comprehensive details for each estimated model, encompass-

ing the model summary, diagnostic plots, and the marginal effects f(THI) over the entire available THI

spectrum with the corresponding model data, as well as the lactation curves f(DIM).

Roadmap First, an overview of the estimated models is presented in Section 4.1. Subsequently, Sec-

tion 4.2 examines the impacts of THI on volumetric milk yield, while Section 4.3 addresses similar effects

on the component-corrected ECM yield. The models in both sections consider the full period of study

from 1982-2023. Then, a succinct description of the split-period results is then provided in the subsequent

Section 4.4. Finally, the results are synthesized and discussed in Section 4.5.



4.1 Model Overview
Milk Yield Table 4.1 shows all single-breed models with the milk yield as dependent variable. ts is set to 1’000’000 for all experiments. Only for the Jersey breed

there are fewer samples available. The estimated degrees of freedom confirm that k is well-chosen for both, f(THI) and f(DIM).

Details Breed Period N Farms Animals ZIP x Month
K EDF

Fitting TimeTHI DIM THI DIM

P M P M

D.1.1 HO Full 1’005’863 947 46’770 7’281 10 15 6.56 8.36 14.08 14.60 1’662
D.1.2.1 HO ≤ 2010 1’001’308 1’656 52’606 10’638 10 15 7.16 8.51 13.90 14.41 1’957
D.1.2.2 HO > 2010 1’000’060 1’064 50’111 7’666 10 15 7.07 8.32 13.99 14.68 1’584
D.3.1 SF Full 1’000’902 888 41’889 6’901 10 15 6.59 8.53 13.23 14.36 1’036

D.3.2.1 SF ≤ 2010 1’001’369 984 41’343 7’092 10 15 6.81 8.86 13.20 14.25 604
D.3.2.2 SF > 2010 1’000’539 2’243 50’067 11’237 10 15 6.60 8.17 13.56 14.52 1’965
D.5.1 BS Full 1’004’349 476 40’819 4’158 10 15 5.67 7.83 14.28 14.66 924

D.5.2.1 BS ≤ 2010 1’000’720 592 41’258 4’848 10 15 6.00 8.53 14.05 14.56 792
D.5.2.2 BS > 2010 1’002’767 883 50’042 6’076 10 15 6.14 8.13 14.22 14.76 921
D.7.1 SI Full 1’000’966 2’231 48’893 10’206 10 15 7.72 8.55 13.18 14.39 1’952

D.7.2.1 SI ≤ 2010 1’000’978 2’700 46’914 10’816 10 15 7.00 8.47 13.15 14.22 1’486
D.7.2.2 SI > 2010 1’001’163 3’199 53’552 9’094 10 15 6.03 8.35 13.47 14.36 1’856
D.9.1 OB Full 1’000’340 3’755 37’976 12’811 10 15 6.44 8.20 13.80 14.66 3’924

D.9.2.1 OB ≤ 2010 1’000’120 4’736 34’962 13’386 10 15 6.39 8.37 13.51 14.66 3’779
D.9.2.2 OB > 2010 1’000’310 3’824 39’977 10’384 10 15 5.87 8.13 13.84 14.61 2’214
D.11.1 JE Full 734’685 4’302 23’675 16’648 10 15 8.57 8.06 13.84 14.56 3’387

D.11.2.1 JE ≤ 2010 203’420 2’220 11’270 8’013 10 15 5.93 7.47 12.88 13.96 1’253
D.11.2.2 JE > 2010 531’265 3’366 19’279 14’669 10 15 5.91 8.10 13.65 14.51 5’214

Table 4.1: Milk Yield - Subsample Statistics and Model Properties. N indicates the number of samples. K is the number of basis functions for the smooth terms.
EDF indicates the estimated degrees of freedom for the smooth terms. P and M stand for primiparous and multiparous. The fitting time is indicated in seconds.
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ECM Yield Table 4.2 shows all single-breed models with the ECM yield as dependent variable. ts is set to 1’000’000 for most experiments. In some cases, to test

the limits of the data variance matrix Cholesky decomposition for different random effect structures, we set ts to a higher limit. This is reflected in a higher N for a

subset of models. The estimated degrees of freedom confirm that k is well-chosen for both, f(THI) and f(DIM).

Details Breed Period N Farms Animals ZIP x Month
K EDF

Fitting TimeTHI DIM THI DIM

P M P M

D.2.1 HO Full 1’101’239 1’070 51’335 7’995 10 15 6.81 8.29 12.95 13.59 963
D.2.2.1 HO ≤ 2010 1’400’770 2’384 73’574 13’070 10 15 7.23 8.48 12.54 13.47 2’666
D.2.2.2 HO > 2010 1’200’362 1’302 60’380 8’805 10 15 7.19 7.95 12.78 13.66 1’544
D.4.1 SF Full 1’000’902 888 41’889 6’901 10 15 6.42 8.50 12.35 14.14 953

D.4.2.1 SF ≤ 2010 1’400’464 1’362 57’954 8’895 10 15 7.14 8.70 12.20 13.51 1’738
D.4.2.2 SF > 2010 1’000’539 2’243 50’067 11’237 10 15 6.57 7.94 12.39 13.42 1’945
D.6.1 BS Full 1’004’349 476 40’819 4’158 10 15 6.15 7.82 13.25 13.63 842

D.6.2.1 BS ≤ 2010 1’402’309 831 57’735 6’011 10 15 7.28 8.54 13.16 13.61 1’001
D.6.2.2 BS > 2010 1’002’767 883 50’042 6’076 10 15 6.28 8.12 13.10 13.82 792
D.8.1 SI Full 1’000’966 2’231 48’893 10’206 10 15 7.56 8.51 12.74 14.25 2’125

D.8.2.1 SI ≤ 2010 1’403’632 3’779 63’979 12’614 10 15 6.88 8.47 12.28 13.48 4’003
D.8.2.2 SI > 2010 1’001’163 3’199 53’552 9’094 10 15 6.26 8.30 12.09 13.16 1’538
D.10.1 OB Full 1’000’340 3’755 37’976 12’811 10 15 6.91 8.36 12.67 13.61 3’323

D.10.2.1 OB ≤ 2010 1’400’717 6’576 47’655 15’048 10 15 7.04 8.59 12.82 13.72 5’684
D.10.2.2 OB > 2010 1’000’310 3’824 39’977 10’384 10 15 6.25 7.99 12.72 13.53 1’888
D.12.1 JE Full 734’685 4’302 23’675 16’648 10 15 5.64 7.95 13.07 13.57 7’405

D.12.2.1 JE ≤ 2010 203’420 2’220 11’270 8’013 10 15 4.98 6.77 11.82 12.82 998
D.12.2.2 JE > 2010 531’265 3’366 19’279 14’669 10 15 5.97 7.82 12.62 13.44 4’597

Table 4.2: ECM Yield - Subsample Statistics and Model Properties. N indicates the number of samples. K is the number of basis functions for the smooth terms.
EDF indicates the estimated degrees of freedom for the smooth terms. P and M stand for primiparous and multiparous. The fitting time is indicated in seconds.
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4.2 Milk Yield

Figure 4.1: 3-day mean THI effect on milk yield for primi- and multiparous Swiss dairy cows at 2023 levels with data subsamples covering the full time period from
1983-2023.
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Figure 4.1 summarizes the effect of the 3-day mean THI on the volumetric milk yield for both parities and

all breeds at average 2023 levels. The subplots are in descending order with respect to the average yields

with the high-yield Holstein yield on the left and the modest-yield Jersey breed on the right. Table 4.3

provides a summary of the THI turning points and the associated loss rates. For multiparous cows the

peak THI points range from 53.6 for Brown Swiss to 58.12 for Jersey. The THI difference between the

lowest and highest peak point is 4.56 THI points. For primiparous cows the the lowest THI peak point

is 48.04 for Brown Swiss and 56.2 for Jersey. The THI difference between the lowest and highest peak

point for primiparous cows is 8.16 points. In both cases, for Brown Swiss and Jersey, the curves for

primi- and multiparous cows, the marginal losses are less accentuated than for the other breeds. For

primiparous Simmental we observe a steep drop after a relatively stable period beyond the THI turning

point. Figure 4.2 and Figure 4.3 only depict the marginal effects of THI without adding the average

levels of year and parity. We observe a two-stage decrease for multiparous Holsteins: similarly as for

primiparous Simmental, the milk yield decline starts at a THI of 54.71 at a moderate rate. Then, at an

approximate value of 65, the loss rate is more steep.

Details Breed Period
THI Peak DIM Peak THI Loss Rate R2

P M P M P M R2
m R2

c

D.1.1 HO Full 51.90 54.71 37 31 -0.035 -0.043 0.12 0.95
D.3.1 SF Full 53.35 54.38 30 25 -0.037 -0.031 0.07 0.93
D.5.1 BS Full 48.04 53.60 21 20 -0.019 -0.013 0.10 0.95
D.7.1 SI Full 50.99 55.28 26 21 -0.045 -0.041 0.04 0.94
D.9.1 OB Full 51.20 54.60 24 20 -0.027 -0.023 0.07 0.96
D.11.1 JE Full 56.20 58.12 31 25 -0.016 -0.008 0.14 0.95

Table 4.3: Milk Yield - Full Period - Turning Points and Loss Rates

Figure 4.2: 3-day mean marginal THI effect on milk yield for primiparous Swiss dairy cows at 2023 levels
with data subsamples covering the full time period from 1982-2023.
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Figure 4.3: 3-day mean marginal THI effect on milk yield for multiparous Swiss dairy cows at 2023 levels
with data subsamples covering the full time period from 1982-2023.



4.3 ECM Yield

Figure 4.4: 3-day mean THI effect on ECM yield for primi- and multiparous Swiss dairy cows at 2023 levels with data subsamples covering the full time period from
1983-2023.
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Figure 4.4 summarizes the effect of the 3-day mean THI on the component-corrected milk yield for both

parities and all breeds at average 2023 levels. Hence, the milk yield is normalized with respect to fat

and protein. First, by the definition of ECM, the average yield levels increase for all breeds19. The

jump for Jersey cows is expected since they are known as a high-fat and high-protein breed. Moreover,

we are able to identify turning points for all breeds in the multiparous case. The lowest THI peak is

at 51.05 for Holstein and the highest at 52.76 for Simmental. The difference between the lowest and

highest THI peak point is 1.71. For primiparous cows, we cannot identify the THI turning points for

Swiss Fleckvieh, Brown Swiss and Jersey. This is because their corresponding slopes are continuously

decreasing. Therefore, from a numerical perspective, there are no turning points in these cases. However,

in all three cases, fairly steep changes in the loss rates at THI values in the mid-fifties are identifiable. For

the other three breeds with available turning points, these are Holstein (46.61), Simmental (48.88) and

Original Braunvieh (49.71). Among them, the difference between the lowest and highest turning point

is 3.41 THI points. Table 4.4 lists the individual THI turning points. Figure 4.5 and Figure 4.6 solely

visualize the marginal effects of THI on ECM yield in separate subfigures for primi- and multiparous

cows.

Details Breed Period
THI Peak DIM Peak THI Loss Rate R2

P M P M P M R2
m R2

c

D.2.1 HO Full 46.61 51.05 13 20 -0.054 -0.065 0.06 0.89
D.4.1 SF Full - 52.26 11 - - -0.058 0.07 0.90
D.6.1 BS Full - 51.27 13 8 - -0.035 0.06 0.92
D.8.1 SI Full 48.88 52.76 9 - -0.056 -0.056 0.03 0.93
D.10.1 OB Full 49.71 52.68 14 4 -0.042 -0.040 0.04 0.92
D.12.1 JE Full - 52.59 22 23 - -0.038 0.07 0.90

Table 4.4: ECM Yield - Full Period - Turning Points and Loss Rates

19 The average milk and ECM yield levels of 2023 derived with descriptive statistics can be consulted in Table 3.3
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Figure 4.5: 3-day mean marginal THI effect on ECM yield for primiparous Swiss dairy cows at 2023
levels with data subsamples covering the full time period from 1983-2023.

Figure 4.6: 3-day mean marginal THI effect on ECM yield for multiparous Swiss dairy cows at 2023
levels with data subsamples covering the full time period from 1983-2023.
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4.4 Split Period: Until 2010 - After 2010
Table 4.5 and Table 4.6 compare the THI turning points and loss rates for the split-period experiments.

The associated figures are provided in Appendix C. We observe THI turning point shifts between the two

periods. More specifically, the turning points are at lower THI values in the period 2011-2023. However,

in many cases, leftward turning point shifts, come with lower linearized loss rates.

Details Breed Period
THI Peak DIM Peak THI Loss Rate R2

P M P M P M R2
m R2

c

D.1.2.1 HO ≤ 2010 53.40 55.24 35 28 -0.040 -0.041 0.06 0.94
D.1.2.2 HO > 2010 51.19 54.83 37 33 -0.031 -0.040 0.12 0.95
D.3.2.1 SF ≤ 2010 54.00 54.34 29 24 -0.033 -0.033 0.05 0.93
D.3.2.2 SF > 2010 51.75 54.62 35 28 -0.023 -0.010 0.07 0.94
D.5.2.1 BS ≤ 2010 52.40 53.67 21 20 -0.024 -0.028 0.08 0.95
D.5.2.2 BS > 2010 46.76 51.83 26 22 -0.021 -0.006 0.10 0.95
D.7.2.1 SI ≤ 2010 52.26 55.80 25 20 -0.034 -0.026 0.03 0.93
D.7.2.2 SI > 2010 53.10 55.35 28 22 -0.023 -0.013 0.03 0.94
D.9.2.1 OB ≤ 2010 52.73 55.01 23 20 -0.028 -0.025 0.04 0.95
D.9.2.2 OB > 2010 49.49 52.63 29 21 -0.023 -0.019 0.06 0.94
D.11.2.1 JE ≤ 2010 57.09 58.33 27 22 -0.019 -0.021 0.10 0.96
D.11.2.2 JE > 2010 55.06 58.13 33 27 -0.015 -0.007 0.12 0.95

Table 4.5: Milk Yield - Split Period - Turning Points and Loss Rates

Details Breed Period
THI Peak DIM Peak THI Loss Rate R2

P M P M P M R2
m R2

c

D.2.2.1 HO ≤ 2010 48.48 51.40 15 - -0.057 -0.060 0.07 0.88
D.2.2.2 HO > 2010 47.49 50.05 23 15 -0.054 -0.059 0.06 0.89
D.4.2.1 SF ≤ 2010 50.05 52.27 - - -0.047 -0.059 0.06 0.90
D.4.2.2 SF > 2010 47.96 50.30 19 10 -0.045 -0.035 0.04 0.88
D.6.2.1 BS ≤ 2010 49.25 51.76 12 - -0.039 -0.047 0.06 0.90
D.6.2.2 BS > 2010 - 48.03 16 11 - -0.027 0.02 0.93
D.8.2.1 SI ≤ 2010 - 53.28 8 - - -0.044 0.05 0.90
D.8.2.2 SI > 2010 48.97 52.81 12 - -0.033 -0.027 0.05 0.87
D.10.2.1 OB ≤ 2010 51.27 52.96 12 - -0.034 -0.040 0.03 0.92
D.10.2.2 OB > 2010 - 51.07 16 9 - -0.033 0.03 0.89
D.12.2.1 JE ≤ 2010 - 51.73 20 21 - -0.045 0.07 0.93
D.12.2.2 JE > 2010 46.57 52.72 25 24 -0.037 -0.038 0.09 0.92

Table 4.6: ECM Yield - Split Period - Turning Points and Loss Rates



4.5 Discussion

Figure 4.7: 3-day mean THI effect on milk yield and ECM yield for primi- and multiparous Swiss dairy cows at 2023 levels with data subsamples covering the full
time period from 1982-2023. This figure combines Figure 4.1 and Figure 4.4.
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General Observations Figure 4.7 combines the findings of the full-period models presented in Sec-

tion 4.2 and Section 4.3. Consistent with expectations, non-linear effects THI on milk yield and ECM

yield have been identified. Specifically, the observed concave-downward responses of THI align with

biological assumptions, indicating that the animals reach an optimal performance level at specific THI

points, beyond which their productivity diminishes as THI levels further increase. For the majority of

breeds, including both primiparous and multiparous cases, these THI turning points can be numeri-

cally determined. Additionally, clear differences in average performance levels across breeds are evident,

with Holstein cattle exhibiting superior production, whereas dual-purpose breeds such as Simmental and

Original Braunvieh exhibit lower performance metrics, contingent upon whether the yield is adjusted for

energy content. Furthermore, it is possible to observe distinct THI turning points among different breeds.

In general, the impact of THI on milk yield is moderate in relation to the average yields among different

breeds. The effects of accumulated THI, commencing from the turning points, range from approximately

0 to 1.5 kg. None of the breeds appears to exhibit significantly superior performance over others due

to THI effects. This observation is congruent with the findings of Ahmed et al. (2022) that suggest

diversification of a dairy cow portfolio does not improve resilience to heat. However, further research is

required, employing simulations over extended time frames and including productivity parameters such

as cost per cow and breed.

Low THI Values An initial investigation reveals unexpectedly low THI values at the turning points.

It is anticipated that the THI turning points would be situated in the high sixties or early seventies for

both milk yield and ECM yield (Armstrong, 1994; De Rensis et al., 2015; Vroege et al., 2023), which

correspond to light heat stress and temperatures between 22°C and 33°C, depending on the relative

humidity, according to Figure A.1. Contrary to this expectation, the peak THI values start in the low

forties concerning ECM yield for primiparous cows and extend to the high sixties with regard to milk

yield for multiparous cows. This implies dairy cows reach their peak performance with respect to THI

independent of the lactation stage, at positive single-digit degrees Celsius in some cases. First, we did

check our data pipeline multiple times for errors and also ran numerous sanity checks regarding the

location-weather matching. Second, in Switzerland, the average farm are small-scale family operations.

We speculated that this effect is due to the fact that in Switzerland the average farm is a small-scale family

operation. When applying the same models to data solely from larger farms with more than 60 cows in

2023, supposedly well-managed, the results indicate an elevation in THI thresholds by approximately 1-2

points. Employing broken-stick fixed-effect models from econometrics, which account for animals and

farms as unobserved heterogeneity and are estimated through pooled OLS regression with a search for

the statistically optimal breaking point, yields similar THI threshold values. Furthermore, when using

the same methodological framework but substituting mean THI values with maximum THI values, the

threshold increases by several THI points; however, all remain significantly below the expected threshold

of 68 THI points20. These THI turning points have precedents: Hill and Wall (2015) report average THI

values as low as 54.9 as threshold values for outdoor cows. Furthermore, Vinet et al. (2023) identify

optimal 3-day THI ranges between 50 and 55 for the Montbélliarde breed. Finally, our reference study

Ahmed et al. (2022) documents negative marginal effects on milk yield at temperatures of 4-5◦C based

on a 7-day mean of daily maximum temperatures. Additionally, Schüller et al. (2013) indicate that

ambient temperatures recorded at official meteorological stations are notably lower when compared to

temperatures within barns. They document temperature discrepancies of 6.5± 3.6◦C and corresponding

variations of 11 ± 6.5 THI points. Our data does not provide insights into the duration that cows spend

indoors versus outdoors, nor which of the pasture-related policy frameworks outlined in Table 2.3 are

20 This serves purely as an indicator because pooled OLS is not appropriate for our unbalanced dataset. The notebooks of
these fixed effect models are provided in Appendix B. The results must be considered as strongly biased.
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applicable to specific farms.

THI Turning Points - Primiparous vs Multiparous Cows We consistently observe lower turning

points for primiparous cows than for multiparous cows. This contradicts the findings of Bernabucci et al.

(2015); West (2003) and Becker et al. (2020), which identify an increased heat tolerance in primiparous

cows. They state that primiparous cows, owing to their lower metabolic heat production and reduced

milk yield, should exhibit an enhanced capacity for mitigating heat stress relative to multiparous cows.

Nevertheless, Maggiolino et al. (2022) and Vinet et al. (2023) report findings consistent with our study.

One plausible explanation posits that primiparous cows are still undergoing maturation, and that their

physiological systems, including thermoregulatory mechanisms, may not be as fully developed or efficient

as those in older, multiparous cows.

THI Turning Points - Breeds As anticipated, distinct THI turning points are observed for various

breeds concerning both milk yield and ECM yield. Notably, Holstein cows present a lower THI threshold

compared to Jersey and Simmental breeds, corroborating our hypotheses detailed in Section 1.3 at a first

glance. In the context of milk yield, multiparous Jersey cows demonstrate the highest THI threshold at

58.12 points, accompanied by a relatively modest rate of loss when contrasted with other breeds. Upon

evaluating the thresholds and the shape of the response curves, Jerseys are identified as possessing the

highest resilience to heat stress. In contrast, Holstein and Simmental breeds exhibit the least tolerance

to elevated temperatures. The Simmental example highlights that not only the THI turning points

are relevant, but also the shapes of the curves. Hence, Brown Swiss exhibiting the lowest THI turning

points, could still be qualified as more heat-robust than Simmental since the losses are considerably larger

for Simmental with a rising THI values. Analyzing the response curve configurations between Holstein

and Simmental breeds, Simmental exhibits superior robustness compared to Holstein, even though the

differences are relatively small.

Figure 4.8: 3-day mean marginal THI effect on milk
yield multiparous Swiss dairy cows with data sub-
samples covering the full time period from 1982-
2023.

Figure 4.9: 3-day mean marginal THI effect on
ECM yield multiparous Swiss dairy cows with data
subsamples covering the full time period from 1982-
2023.

The THI thresholds are lower for ECM yield compared to milk yield. Consequently, the milk component

yields in relation to THI induce a leftward shift. Nonetheless, this shift does not remain uniform across

all breeds. While the disparity between the lowest and highest THI turning points for milk yield is 4.56

for primiparous cows and 8.16 THI units for multiparous cows, the differences for ECM yield are notably

smaller. Apparent benefits for certain breeds with respect to milk volume dissipate upon adjusting the

milk volume for fat and protein yields. Figure 4.8 and Figure 4.9 superpose the marginal effects of THI

for each breed without confidence intervals to better illustrate this observation. The inverse relationship

between THI and both fat and protein content is expected (Moore et al., 2023). Vinet et al. (2023) and

Hill and Wall (2015) have determined that declines in fat content in relation to THI manifest at an earlier
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stage or are stronger than protein declines. The specific individual contributions of protein and fat per

breed to the observed shift and dissipation require further investigation.

Confidence Intervals The variability observed in the confidence intervals for each breed can be at-

tributed to the employed subsampling strategy. The larger farms, the more samples per farm. Moreover,

the available number of samples per farm also depends on the sampling strategy of the breeding asso-

ciations. Table 4.1 and Table 4.2 support this statement. Consequently, our approach of incrementally

incorporating farms into the dataset until a predetermined sample limit is reached results in a larger

number of samples for these farms ts. As a result, this approach contributes to diminished THI diversity,

given that all samples gathered on a particular test-day at a given farm are associated with a single THI

data point. This raises the question whether alternative subsampling methodologies at the farm level

might need to be employed. Nonetheless, a careful interpretation of confidence intervals is necessary in

this non-experimental study design and is further elaborated in Chapter 5.

Split Period: Until 2010 - After 2010 A striking difference emerges when splitting the data into

two time periods: the THI turning points tend to be lower in the more recent data period from 2011 to

2023 compared to the period from 1982 to 2023. The Jersey breed poses an exception for ECM yield.

The average daily milk production is substantially higher today for all breeds relative to 13 years ago,

attributed to successful breeding programs. The reduced THI turning points suggest that selective breed-

ing has made dairy cows less tolerant to heat. The principal objectives of breeding are to enhance dairy

performance with equivalent or relatively diminished input. Furthermore, long-term genetic selection

exerts an influence on the metabolic system. The current selection strategies may prioritize enhance-

ments in dairy performance without necessarily fostering heat resilience. As breeding continues to result

in increased yields, offsetting heat-induced losses despite heightened heat exposure for dairy cows in

Switzerland, this development potentially prompts more concerns regarding animal welfare rather than

economic implications (König and Swalve, 2024). However, our results need further investigation with

different cut-off years, multiple periods or different data subsampling strategies. Furthermore, shifts in

THI turning points come along with changes in the loss rates. For example, simulations aggregating the

daily effects with weather data over a long periods are necessary to further validate this negative change

in heat-tolerance.



5
Conclusion

We conclude this thesis by outlining our agronomic and computational contributions, and listing some

limitations of the presented approach. We then outline some avenues for future research in this area.

5.1 Contributions
Agronomic Contributions

For the agronomic part, we determine performance-critical thresholds of THI on dairy performance for

six dairy cow breeds within Switzerland. This includes the non-linear marginal effects of THI on milk and

ECM yield for these breeds. The THI turning points begin as early as the high forties for primiparous cows

and in the low fifties for multiparous cows, contingent upon the breed and performance variable. Prior

research indicates a greater heat-resilience in primiparous cows relative to multiparous cows; however,

our findings suggest the contrary. Next, we note varying non-linear marginal effects of THI on different

breeds in terms of volumetric milk yield. Yet, these marginal effects align to very similar curves when

the volume is adjusted with fat and protein to the ECM yield. Moreover, when the data is divided into

two periods, 1982 to 2010 and 2011 to 2023, we observe that the THI turning point is generally lower

in the more recent period. Furthermore, while not explicitly addressed in our research question, the

incorporation of days in milk as a non-linear function enables the derivation of average lactation curves

for each breed and facilitates the identification of lactation peaks utilizing the same methodology as a

secondary outcome. These are not fully assessed in this work; however, they imply that lactation peaks

may occur earlier than traditionally assumed.

To the best of our knowledge, even when subsampling, our investigation offers unprecedented granu-

larity across geospatial and temporal dimensions. Furthermore, the data-driven smooth-term strategy

utilizing GAMs isolates the THI effect while accounting for geospatial, locational, animal, and tempo-

ral factors with sparse yet extensive production data, greatly simplifying the methodology by requiring

minimal initial assumptions about non-linearity of THI and the lactation curve. Generally, our research

may be regarded as an advancement of Bryant et al. (2007), employing more recent computational and

mathematical innovations, chiefly supported by Wood (2017).

Implications for Swiss Agriculture

Our results suggest that the thermoneutral zone for Swiss dairy cows is at a lower THI range than

expected. When translated to a temporal context, this suggests that dairy cows are adversely affected

by heat stress as early as March and continuing through to the late autumn months. These findings

underscore the critical importance of well-chosen farm management strategies, including housing and

feeding practices, to mitigate milk yield reductions and maintain animal welfare. Although further

validation is necessary, the results for distinct periods suggest diminished heat tolerance in today’s dairy

49
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cows. At present, increasing heat resilience is not a primary objective in breeding programs. However,

given the anticipated rise in the frequency of hot days, such a breeding objective may be needed, depending

on the progress in breeding for milk yield in the upcoming years.

Computational Contributions

For the computational part, arising from the challenges encountered with our sparse data structure as

depicted in Figure 3.1 and the targeted estimation strategy delineated in Section 3.2.4, a bottleneck in the

mgcv GAM fitting routines is identified. As a remedy, we develop two prototype extensions for gamm4 in

order to estimate Generalized Additive Mixed Models with a larger number of samples and random effect

factor levels than previously achievable. gamm4b represents a version with bug fixes and performance

enhancements based on R. gammJ facilitates the estimation of GAMMs using a modified gamm4 along

with a bridge to an adapted version of MixedModels.jl serving as the foundational estimation engine,

complemented by a performance-optimized data covariance matrix decomposition for post-processing

operations.

5.2 Limitations
High-Producing vs Low-Producing Cows The principal objective of our work is to determine the

national average impact of the THI on dairy performance across different breeds. High-producing dairy

cows are more susceptible to heat stress than their low-producing counterparts (Kadzere et al., 2002;

De Rensis et al., 2015). This particular aspect has not been incorporated into our current models and

therefore, the consideration of production levels within our study remains incomplete. The unusually low

peak THI values, alongside the residual patterns in diagnostic plots of the models, suggest that integrating

this aspect could potentially enhance the model quality and provide a more lucid understanding of the

peak THI values.

Single-Breed Models As elucidated in Section 3.4.4.4, the principal limitation of gammJ is not in

the estimation of models that incorporate millions of samples and numerous random effect factor levels,

but rather in the calculation of the data covariance matrix V. This constraint hinders our capacity

to estimate a multi-breed model as proposed in Equation 3.7, as we foresee the requirement for at least

several hundred thousand samples per breed. This conclusion is derived from model evaluations involving

Jersey experiments as documented in Table 3.5. While single-breed models allow for the estimation and

visual examination of the THI effects on dairy performance across diverse breeds, they are insufficient for

determining the statistical significance of the differences observed between these breeds. In a multi-breed

model, wherein the effect of THI is interacted with the breed, an estimate of the statistical significance of

each smooth is obtainable, and moreover, they can be visually compared safely as they originate from the

same model. Furthermore, differences between smooth terms can be computationally discerned (Simpson,

2017a,b). When comparing smooth terms of distinct single-breed models, a robust comparison is feasible

only if one can substantiate that all terms in a corresponding multi-breed model are interacted by breed.

The justification for such an interaction for all model terms is partially addressed in Section 3.2.3, but

the general question is still open.

Subsampling Section 4.1 and the corresponding results demonstrate the influence of farm and sam-

pling structure on the THI diversity within our subsamples. This influence is further reflected in the

model’s confidence intervals. The central argument underpinning the subsampling strategy outlined in

Chapter 4 is the implicit maintenance of farm structure within the model. Consequently, given the

imposed limitation on the maximum number of samples due to computational constraints, it becomes

pertinent to explore whether the current subsampling strategy remains suitable, since in scenarios the
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number of farms merely amounts to several hundred. For example, considerations may be made towards

relaxing the assumption regarding farm structure and update the sampling strategy accordingly.

Limited Interpretability of P-Values and Spatial Autocorrelation The field-derived data is

acquired from operational agricultural environments, with the objective of overseeing breeding advance-

ments and facilitating long-term analytics. This data is not derived from an experimental design, as

elaborated in Section 3.1. Data collection includes repeated measurements for each animal and farm. On

designated sampling days, data from all animals within a farm is collected concurrently. The geospatial

distribution of farms introduces regional dynamics and topological diversity, which are further influenced

by meteorological conditions. Therefore, the samples are not independent and identically distributed.

This is why we use a mixed model. We partially control for group, spatial and temporal dynamics with

animal α, farm ϕ and spatio-temporal ι random effect terms in our models. Nonetheless, the issue of

autocorrelation is not addressed in the error terms ϵ, which are under iid assumption in a mixed model

framework, nor is it considered within the model weights because both lme4 and MixedModels.jl lack

implementation of such structures. Consequently, although a larger sample size results in significant

p-values, these p-values lack interpretative validity. The same applies to confidence intervals. Never-

theless, the reliability of the estimated fixed effect coefficients and smooth terms remains unaffected, as

they are derived from a substantial dataset comprising hundreds of thousands of samples. However, it is

imperative to exercise utmost caution when interpreting confidence intervals and conducting hypothesis

testing.

Farm Location as Fixed Effects Both, random and fixed effects, are applied to account for unob-

served heterogeneity. In this context, Wooldridge (2010, Chapter 10) examines the assumptions under-

lying both fixed and random effects models. The assumption associated with random effects suggests

that unobserved individual heterogeneity remains uncorrelated with the covariates. In contrast, the fixed

effects assumption allows for the possibility that these individual-specific effects may be correlated with

the explanatory variables. Drawing from this econometric perspective, it can be asserted that the farm

location random effect ϕ demonstrates a certain degree of correlation with the THI smooth function

f(THI), thereby contravening the assumption of random effects. Consequently, it may be advocated that

the unobserved heterogeneity associated with farm location should be represented through fixed effects.

Notably, in Bryant et al. (2007), individual herds are modeled as fixed effects. A qualitative argument

posits that constraining the individual farm coefficients by modeling them as random intercepts could be

overly restrictive. The variability in farming practices and conditions may not be adequately captured

by a normal distribution of these coefficients. Conversely, an argument in favor of treating individual

farms as random intercepts arises from the limited subset of farms utilized in our subsamples. Despite

this, farm coefficients are modeled as random effects in all our experiments for a practical reason: Most

mixed model libraries do not implement the fixed effect matrix as sparse matrices, which would be a

requirement given the number of farms in our dataset. MixedModels.jl does indeed provide support for

sparse fixed effect matrices. However, due to time constraints, models where individual farms are treated

as fixed effect coefficients have not been tested. Nevertheless, this debate surrounding farms as fixed

effects requires more attention.

Additional Weather Variables as Control Our models do not control for additional weather vari-

ables such as radiation, sunshine duration, or precipitation. As indicated in Chapter 2, these factors

similarly influence a dairy cow’s heat management. Consequently, the effect of THI not be completely

isolated. Therefore, it could be advantageous to conduct experiments that control for these variables,

notwithstanding the possibility that they might confound with temperature and relative humidity. An

example study which applies this methodology for test-day milk samples is Ahmed et al. (2022).
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5.3 Future Research
Finally, we outline seven opportunities for extension of this work into multiple directions.

First, the preceding section underscores the necessity to conduct further experimentation in model selec-

tion and subsampling strategies. This involves a meticulous examination of whether single breed models

are adequate to facilitate a valid comparison among breeds.

Second, it is essential to address the distinction between high- and low-producing cows. In this context,

data splits as straightforward as milk yield above µ + σ
2 for high-producing and below µ − σ

2 for low-

producing cows could serve as an initial framework.

Third, other dimensions of model selection merit attention, including the decision between random ef-

fects and fixed effects for farm location, additional controls for weather, as well as considerations of

autocorrelation. Generally, model selection involving mixed models requires the use of maximum likeli-

hood estimation ML instead of restricted maximum likelihood REML to ensure their comparability with

model selection criteria such as the Akaike Information Criterion (Bozdogan, 1987). To date, our exten-

sion from Section 3.4.4 has only been tested with REML, as a comprehensive model selection process

has not yet been pursued. Our parameter investigation has prioritized the appropriate determination of

degrees of freedom for the smooth terms, for which we used estimated degrees of freedom from mgcv as a

selection criterion. In addressing autocorrelation aspects with GAMMs, spatial+ by Dupont et al. (2020)

might be considered. Additionally, incorporating spatial coordinates such as longitude and latitude, as

well as the day of the year for temporal aspects, as smooth terms could potentially address autocorre-

lation concerns. Alternatively, Bolker (2024) posits that the integration of spatial correlation functions

into lme4 is not an immediate priority, but should be reportedly straightforward to implement in the

context of linear mixed models. It is reasonable to infer that this assertion extends to the MixedModels.jl

library as well.

Fourth, the effect of additional dairy performance variables from THI could be investigated, such as

lactose and somatic cell count. Both of these are relevant for quality and health aspects. Moreover,

the component yields such as fat and protein could be analyzed individually, in addition to the energy-

corrected milk (ECM) yield to better understand which and how much they contribute to the observed

phenomenon of aligned ECM curves for individual breeds.

Fifth, our models do not include interactions between THI and days in milk. Given that GAMs can in-

corporate multi-dimensional smooth terms, exploring a two-dimensional smooth function f(THI,DIM)

could enhance both the interpretability and representativeness of the modelling.

Sixth, the models employed in this study do not include the weather exposure experienced by dairy

cows prior to parturition. Additionally, they do not consider breeding ancestry or supplementary phys-

iological data available. The data furnished by the three associations, in conjunction with the available

meteorological data, would facilitate such expansions.

Seventh, the library mgcv developed by Simon Wood demonstrates high computational efficiency for

generalized additive models (GAMs) when applied to datasets characterized by a large number of samples

but limited in the diversity of factor levels. The methodologies we have formulated in Section 3.4.4

partially bridge this gap. Nevertheless, further empirical validation and optimizations are necessary to

make these innovations ready for broader use in academic and industrial applications.
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Bates, D., Mächler, M., and Jagan, M. (2024). Matrix: Sparse and Dense Matrix Classes and Methods.

Becker, C. A., Collier, R. J., and Stone, A. E. (2020). Invited review: Physiological and behavioral effects

of heat stress in dairy cows. Journal of Dairy Science, 103(8):6751–6770.
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A
THI Table

The following Figure A.1 is a THI table with an extended temperature range compared to the commonly

available THI tables. We use the THI specification from National Research Council (1971). The table

facilitates the interpretation of our findings in Chapter 4.
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Figure A.1: THI Table with an extended temperature.
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The repository of this thesis is:

https://github.com/an-ethz/heat4milk-report

Notebooks
• heat4milk-report/notebooks/preprocessing Data Preprocessing (Section 3.1)

• heat4milk-report/notebooks/models/gamm Single Breed Models (Chapter 4)

• heat4milk-report/notebooks/models/figures Plotting Templates (Chapter 4)

• heat4milk-report/notebooks/models/fixed effect econometrics (Section 4.5)

gamm4b
• heat4milk-report/src/gamm4b/gamm4b example.ipynb Example notebook with dissected gamm4

and proposed modifications (Section3.4.4.1)

gammJ
• https://github.com/an-ethz/MixedModels.jl Modified MixedModels.jl (Section 3.4.4.3)

• heat4milk-report/src/gammJ/gammJ v9 example.ipynb Example notebook with dissected gamm4

and modified MixedModels.jl as fitting engine (Section 3.4.4.2). This is the gammJ entrypoint.

• heat4milk-report/src/gammJ/trainGAM.jl Model estimation called by gammJ (Equation 3.12)

• heat4milk-report/src/gammJ/postprocessGAM.jl Julia Post-processing operations called by gammJ

(Section 3.4.4.4)

62

https://github.com/an-ethz/heat4milk-report
heat4milk-report/notebooks/preprocessing
heat4milk-report/notebooks/models/gamm
heat4milk-report/notebooks/models/figures
heat4milk-report/notebooks/models/fixed_effect_econometrics
heat4milk-report/src/gamm4b/gamm4b_example.ipynb
https://github.com/an-ethz/MixedModels.jl
heat4milk-report/src/gammJ/gammJ_v9_example.ipynb
heat4milk-report/src/gammJ/trainGAM.jl
heat4milk-report/src/gammJ/postprocessGAM.jl


C
Split Period: Until 2010 - After 2010

The following pages provide the summarizing figures with the THI curves for the split-period models.
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C.1 Milk Yield

Figure C.1: 3-day mean THI effect on milk yield for primi- and multiparous Swiss dairy cows at 2010 levels with data subsamples covering the full time period from
1982-2010.
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Figure C.2: 3-day mean THI effect on milk yield for primi- and multiparous Swiss dairy cows at 2023 levels with data subsamples covering the full time period from
2011-2023
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C.2 ECM Yield

Figure C.3: 3-day mean THI effect on ECM yield for primi- and multiparous Swiss dairy cows at 2010 levels with data subsamples covering the full time period from
1982-2010.
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Figure C.4: 3-day mean THI effect on ECM yield for primi- and multiparous Swiss dairy cows at 2023 levels with data subsamples covering the full time period from
2011-2023.

67



D
Models
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D.1 Holstein: Milk Yield
D.1.1 Full Period: 1985-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 17.8235 0.6916 25.7716 < 0.0001
parityprimiparous -3.4189 0.0129 -264.1612 < 0.0001
year1986 0.3265 0.3478 0.9389 0.3478
year1987 0.1965 0.5377 0.3654 0.7148
year1988 0.0287 0.6610 0.0435 0.9653
year1989 0.5588 0.8363 0.6682 0.5040
year1990 0.8289 0.8270 1.0024 0.3162
year1991 0.9862 0.8085 1.2198 0.2226
year1992 1.3033 0.7913 1.6470 0.0996
year1993 1.3348 0.7892 1.6912 0.0908
year1994 1.2533 0.7838 1.5990 0.1098
year1995 1.5410 0.7860 1.9605 0.0499
year1996 1.7461 0.7837 2.2280 0.0259
year1997 2.2454 0.7879 2.8498 0.0044
year1998 2.8965 0.7939 3.6483 0.0003
year1999 2.8606 0.8275 3.4567 0.0005
year2000 3.0084 0.7605 3.9561 0.0001
year2001 3.1575 0.7423 4.2539 < 0.0001
year2002 3.5520 0.7379 4.8134 < 0.0001
year2003 3.9766 0.7361 5.4026 < 0.0001
year2004 4.3994 0.7339 5.9945 < 0.0001
year2005 4.8325 0.7330 6.5926 < 0.0001
year2006 4.9189 0.7324 6.7165 < 0.0001
year2007 4.7073 0.7264 6.4805 < 0.0001
year2008 5.0081 0.7264 6.8946 < 0.0001
year2009 5.4514 0.7225 7.5456 < 0.0001
year2010 6.0077 0.7211 8.3318 < 0.0001
year2011 6.2726 0.7234 8.6706 < 0.0001
year2012 6.2564 0.7278 8.5960 < 0.0001
year2013 5.9409 0.7442 7.9826 < 0.0001
year2014 6.5407 0.7493 8.7297 < 0.0001
year2015 6.9626 0.7412 9.3935 < 0.0001
year2016 7.3016 0.7404 9.8618 < 0.0001
year2017 7.5165 0.7399 10.1585 < 0.0001
year2018 8.0975 0.7432 10.8957 < 0.0001
year2019 8.2939 0.7587 10.9316 < 0.0001
year2020 8.7453 0.7749 11.2863 < 0.0001
year2021 9.2780 0.7623 12.1713 < 0.0001
year2022 9.4385 0.7518 12.5551 < 0.0001
year2023 9.9865 0.7507 13.3024 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.3629 8.3629 517.3513 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.5585 6.5585 48.0496 < 0.0001
s(days in milk t):paritymultiparous 14.5992 14.5992 120213.0040 < 0.0001
s(days in milk t):parityprimiparous 14.0843 14.0843 14232.8232 < 0.0001

Table D.1: Holstein: Milk Yield - 1985-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.4424 0.1070 4.14 ¡1e-04
s(thi mean t0 3d):primiFx1 0.3466 0.1162 2.98 0.0028
s(days in milk ):multiFx1 5.0429 0.5387 9.36 ¡1e-20
s(days in milk ):primiFx1 4.8631 0.6608 7.36 ¡1e-12
Variance Component Estimated σ

σα 3.1230
σι 1.0079
σϕ 3.1247
s(thi mean t0 3d):multi 2.3664
s(days in milk ):primi 9.0384
s(days in milk ):multi 10.9130
s(thi mean t0 3d):primi 1.2902
Residual 3.7902

Table D.2: Holstein: Milk Yield - 1985-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.1: Holstein: Milk Yield - 1985-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.2: Holstein: Milk Yield - 1985 - 2023 - THI Effect and Lactation Curve
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D.1.2 Split Period: Until 2010 - After 2010
D.1.2.1 Split Period: 1985 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 17.4723 0.4846 36.0518 < 0.0001
parityprimiparous -2.9636 0.0135 -218.8244 < 0.0001
year1986 0.1529 0.1767 0.8655 0.3868
year1987 -0.0051 0.3698 -0.0139 0.9889
year1988 -0.0538 0.4676 -0.1151 0.9084
year1989 0.5836 0.5228 1.1162 0.2643
year1990 1.0427 0.5324 1.9586 0.0502
year1991 1.2681 0.5365 2.3638 0.0181
year1992 1.5385 0.5405 2.8462 0.0044
year1993 1.7418 0.5397 3.2271 0.0013
year1994 1.7286 0.5424 3.1867 0.0014
year1995 2.0734 0.5756 3.6019 0.0003
year1996 2.2707 0.5748 3.9506 0.0001
year1997 2.7340 0.5549 4.9272 < 0.0001
year1998 3.3217 0.5222 6.3608 < 0.0001
year1999 3.4296 0.5187 6.6121 < 0.0001
year2000 3.6071 0.5113 7.0543 < 0.0001
year2001 3.9367 0.5104 7.7127 < 0.0001
year2002 4.2369 0.5132 8.2562 < 0.0001
year2003 4.7670 0.5144 9.2674 < 0.0001
year2004 5.2638 0.5135 10.2511 < 0.0001
year2005 5.7675 0.5124 11.2567 < 0.0001
year2006 5.9112 0.5147 11.4841 < 0.0001
year2007 5.8929 0.5097 11.5607 < 0.0001
year2008 6.2882 0.4996 12.5867 < 0.0001
year2009 6.9956 0.5079 13.7748 < 0.0001
year2010 7.7149 0.5678 13.5864 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.5121 8.5121 747.8886 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.1550 7.1550 77.0589 < 0.0001
s(days in milk t):paritymultiparous 14.4063 14.4063 130999.6058 < 0.0001
s(days in milk t):parityprimiparous 13.8961 13.8961 17856.8448 < 0.0001

Table D.3: Holstein: Milk Yield - 1985-2010 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.5301 0.1141 -4.65 < 1e-05
s(thi mean t0 3d):primiFx1 -0.3337 0.1241 -2.69 0.0072
s(days in milk ):multiFx1 2.4075 0.5902 4.08 < 1e-04
s(days in milk ):primiFx1 2.9462 0.6274 4.70 < 1e-05
Variance Component Estimated σ

σα 2.9738
σι 0.9483
σϕ 2.7446
s(thi mean t0 3d):multi 2.7246
s(days in milk ):primi 7.6254
s(days in milk ):multi 9.4602
s(thi mean t0 3d):primi 1.5465
Residual 3.4568

Table D.4: Holstein: Milk Yield - 1985-2010 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.3: Holstein: Milk Yield - 1985-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.4: Holstein: Milk Yield - 1985 - 2010 - THI Effect and Lactation Curve
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D.1.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 23.8289 0.3841 62.0385 < 0.0001
parityprimiparous -3.5815 0.0143 -250.7346 < 0.0001
year2012 -0.1435 0.4281 -0.3352 0.7375
year2013 -0.4446 0.4293 -1.0358 0.3003
year2014 0.1502 0.4291 0.3501 0.7263
year2015 0.4723 0.4308 1.0965 0.2728
year2016 0.7635 0.4567 1.6718 0.0946
year2017 1.1762 0.4488 2.6207 0.0088
year2018 1.7098 0.4437 3.8535 0.0001
year2019 1.9267 0.4429 4.3500 < 0.0001
year2020 2.4354 0.4451 5.4719 < 0.0001
year2021 2.6773 0.4567 5.8617 < 0.0001
year2022 2.5650 0.4533 5.6584 < 0.0001
year2023 2.9380 0.4808 6.1102 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.3215 8.3215 484.5057 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.0657 7.0657 29.5389 < 0.0001
s(days in milk t):paritymultiparous 14.6827 14.6827 114849.4858 < 0.0001
s(days in milk t):parityprimiparous 13.9847 13.9847 12129.3973 < 0.0001

Table D.5: Holstein: Milk Yield - 2011-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.5663 0.1050 -5.39 < 1e-07
s(thi mean t0 3d):primiFx1 -0.4351 0.1310 -3.32 0.0009
s(days in milk ):multiFx1 6.2500 0.5244 11.92 < 1e-32
s(days in milk ):primiFx1 3.9576 0.6407 6.18 < 1e-09
Variance Component Estimated σ

σα 3.1563
σι 1.1935
σϕ 3.7462
s(thi mean t0 3d):multi 2.2598
s(days in milk ):primi 8.5279
s(days in milk ):multi 12.0097
s(thi mean t0 3d):primi 1.6772
Residual 3.9639

Table D.6: Holstein: Milk Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.5: Holstein: Milk Yield - 2011-2023 - Diagnostic Plot



Models 77

THI Effect and Lactation Curve

Figure D.6: Holstein: Milk Yield - 2010 - 2023 - THI Effect and Lactation Curve
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D.2 Holstein: ECM Yield
D.2.1 Full Period: 1985-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 20.1076 0.1617 124.3358 < 0.0001
parityprimiparous -3.9424 0.0093 -422.7197 < 0.0001
year1986 0.1635 0.1304 1.2541 0.2098
year1987 -0.1100 0.1299 -0.8464 0.3973
year1988 -0.4448 0.1288 -3.4531 0.0006
year1989 0.1254 0.1278 0.9809 0.3267
year1990 0.5707 0.1281 4.4557 < 0.0001
year1991 0.7665 0.1268 6.0465 < 0.0001
year1992 1.1648 0.1260 9.2442 < 0.0001
year1993 1.2702 0.1250 10.1623 < 0.0001
year1994 0.9399 0.1233 7.6238 < 0.0001
year1995 1.3246 0.1236 10.7206 < 0.0001
year1996 1.7648 0.1222 14.4466 < 0.0001
year1997 2.3101 0.1223 18.8938 < 0.0001
year1998 2.9914 0.1206 24.8069 < 0.0001
year1999 2.6437 0.1193 22.1562 < 0.0001
year2000 2.5987 0.1186 21.9127 < 0.0001
year2001 2.9072 0.1179 24.6612 < 0.0001
year2002 3.0868 0.1175 26.2770 < 0.0001
year2003 3.5531 0.1171 30.3539 < 0.0001
year2004 4.0984 0.1169 35.0471 < 0.0001
year2005 4.7114 0.1167 40.3673 < 0.0001
year2006 4.6636 0.1166 39.9990 < 0.0001
year2007 4.3704 0.1165 37.5094 < 0.0001
year2008 4.7638 0.1164 40.9126 < 0.0001
year2009 5.1818 0.1165 44.4952 < 0.0001
year2010 5.8336 0.1164 50.1183 < 0.0001
year2011 6.0286 0.1164 51.7791 < 0.0001
year2012 6.1847 0.1167 53.0014 < 0.0001
year2013 5.7015 0.1168 48.8341 < 0.0001
year2014 6.3304 0.1167 54.2257 < 0.0001
year2015 6.7851 0.1168 58.0841 < 0.0001
year2016 7.3041 0.1170 62.4072 < 0.0001
year2017 7.3981 0.1169 63.2676 < 0.0001
year2018 8.0557 0.1171 68.8206 < 0.0001
year2019 8.2896 0.1171 70.8058 < 0.0001
year2020 8.9829 0.1174 76.5305 < 0.0001
year2021 9.5582 0.1170 81.6686 < 0.0001
year2022 9.6665 0.1169 82.6636 < 0.0001
year2023 10.4348 0.1167 89.4257 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.2862 8.2862 226.9355 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.8141 6.8141 229.3868 < 0.0001
s(days in milk t):paritymultiparous 13.5893 13.5893 104352.5853 < 0.0001
s(days in milk t):parityprimiparous 12.9465 12.9465 10972.7975 < 0.0001

Table D.7: Holstein: ECM Yield - 1985-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.638531 0.115151 5.55 < 1e-07
s(thi mean t0 3d):primiFx1 0.559616 0.129725 4.31 < 1e-04
s(days in milk ):multiFx1 1.239 0.456686 2.71 0.0067
s(days in milk ):primiFx1 2.33168 0.535407 4.35 < 1e-04
Variance Component Estimated σ

σα 3.11752
σι 1.07133
σϕ 3.47683
s(thi mean t0 3d):multi 2.15566
s(days in milk ):primi 6.54541
s(days in milk ):multi 8.73852
s(thi mean t0 3d):primi 1.38212
Residual 4.16782

Table D.8: Holstein: ECM Yield - 1985-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.7: Holstein: ECM Yield - 1985-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.8: Holstein: ECM Yield - 1985 - 2023 - THI Effect and Lactation Curve
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D.2.2 Split Period: Until 2010 - After 2010
D.2.2.1 Split Period: 1985 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 19.5611 0.4528 43.2033 < 0.0001
parityprimiparous -3.4047 0.0125 -272.5784 < 0.0001
year1986 0.1564 0.2983 0.5244 0.6000
year1987 -0.1604 0.3786 -0.4236 0.6718
year1988 -0.4125 0.4604 -0.8959 0.3703
year1989 0.2840 0.4787 0.5933 0.5530
year1990 0.8561 0.5110 1.6753 0.0939
year1991 1.2054 0.5295 2.2764 0.0228
year1992 1.5896 0.4714 3.3720 0.0007
year1993 1.7199 0.4841 3.5526 0.0004
year1994 1.5862 0.4844 3.2746 0.0011
year1995 1.9400 0.4862 3.9899 0.0001
year1996 2.3149 0.4891 4.7332 < 0.0001
year1997 2.8495 0.4910 5.8030 < 0.0001
year1998 3.4994 0.4911 7.1260 < 0.0001
year1999 3.4311 0.4857 7.0648 < 0.0001
year2000 3.4183 0.4792 7.1327 < 0.0001
year2001 3.8865 0.4810 8.0803 < 0.0001
year2002 3.9895 0.4914 8.1191 < 0.0001
year2003 4.4780 0.4786 9.3555 < 0.0001
year2004 5.1219 0.4755 10.7715 < 0.0001
year2005 5.7371 0.4721 12.1526 < 0.0001
year2006 5.8086 0.4726 12.2895 < 0.0001
year2007 5.7180 0.4751 12.0362 < 0.0001
year2008 6.2530 0.4793 13.0457 < 0.0001
year2009 6.9507 0.4640 14.9808 < 0.0001
year2010 7.7630 0.4885 15.8912 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.4826 8.4826 267.5958 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.6228 7.6228 298.9671 < 0.0001
s(days in milk t):paritymultiparous 13.4714 13.4714 151697.0514 < 0.0001
s(days in milk t):parityprimiparous 12.5410 12.5410 17254.6016 < 0.0001

Table D.9: Holstein: ECM Yield - 1985-2010 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.4794 0.1132 4.23 < 1e-04
s(thi mean t0 3d):primiFx1 0.4898 0.1339 3.66 0.0003
s(days in milk ):multiFx1 -1.1736 0.4499 -2.61 0.0091
s(days in milk ):primiFx1 0.3524 0.4318 0.82 0.4144
Variance Component Estimated σ

σα 2.9719
σι 1.0261
σϕ 3.0716
s(thi mean t0 3d):multi 2.4372
s(days in milk ):primi 4.3089
s(days in milk ):multi 7.2579
s(thi mean t0 3d):primi 1.8041
Residual 3.7828

Table D.10: Holstein: ECM Yield - 1985-2010 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.9: Holstein: ECM Yield - 1985-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.10: Holstein: ECM Yield - 1985 - 2010 - THI Effect and Lactation Curve
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D.2.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 26.0912 0.3371 77.3959 < 0.0001
parityprimiparous -4.1684 0.0144 -289.2770 < 0.0001
year2012 -0.0036 0.4530 -0.0079 0.9937
year2013 -0.4704 0.4087 -1.1510 0.2497
year2014 -0.0259 0.4077 -0.0636 0.9493
year2015 0.3804 0.4236 0.8978 0.3693
year2016 0.7225 0.4482 1.6118 0.1070
year2017 1.0551 0.4375 2.4115 0.0159
year2018 1.7452 0.4307 4.0524 0.0001
year2019 1.9702 0.4251 4.6343 < 0.0001
year2020 2.6159 0.4280 6.1119 < 0.0001
year2021 2.8975 0.4212 6.8784 < 0.0001
year2022 2.6987 0.4087 6.6037 < 0.0001
year2023 3.2917 0.4105 8.0192 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 7.9522 7.9522 319.3654 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.1992 7.1992 264.9658 < 0.0001
s(days in milk t):paritymultiparous 13.6599 13.6599 103206.5817 < 0.0001
s(days in milk t):parityprimiparous 12.7770 12.7770 7909.0701 < 0.0001

Table D.11: Holstein: ECM Yield - 2011-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.6969 0.1034 6.74 < 1e-10
s(thi mean t0 3d):primiFx1 0.6876 0.1398 4.92 < 1e-06
s(days in milk ):multiFx1 2.6534 0.4168 6.37 < 1e-09
s(days in milk ):primiFx1 2.1363 0.4968 4.30 < 1e-04
Variance Component Estimated σ

σα 3.1148
σι 1.2275
σϕ 4.1812
s(thi mean t0 3d):multi 1.7213
s(days in milk ):primi 5.7506
s(days in milk ):multi 8.9112
s(thi mean t0 3d):primi 1.7948
Residual 4.3794

Table D.12: Holstein: ECM Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.11: Holstein: ECM Yield - 2011 - 2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.12: Holstein: ECM Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.3 Swiss Fleckvieh: Milk Yield
D.3.1 Full Period: 1984-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 17.0242 1.8212 9.3480 < 0.0001
parityprimiparous -2.9419 0.0129 -228.3771 < 0.0001
year1985 0.3712 1.8309 0.2028 0.8393
year1986 0.2268 1.8300 0.1240 0.9013
year1987 0.1271 1.8312 0.0694 0.9447
year1988 -0.1437 1.8381 -0.0782 0.9377
year1989 0.6052 1.8388 0.3291 0.7421
year1990 0.9507 1.8377 0.5173 0.6049
year1991 1.1556 1.8380 0.6287 0.5295
year1992 1.3538 1.8344 0.7380 0.4605
year1993 1.3283 1.8344 0.7241 0.4690
year1994 1.3716 1.8349 0.7475 0.4548
year1995 1.5775 1.8387 0.8579 0.3909
year1996 1.7338 1.8380 0.9433 0.3455
year1997 2.1730 1.8387 1.1818 0.2373
year1998 3.0236 1.8388 1.6443 0.1001
year1999 3.1711 1.8415 1.7220 0.0851
year2000 3.2774 1.8430 1.7783 0.0754
year2001 3.5746 1.8569 1.9250 0.0542
year2002 3.8156 1.8496 2.0629 0.0391
year2003 4.3135 1.8487 2.3332 0.0196
year2004 4.7284 1.8491 2.5572 0.0106
year2005 4.9766 1.8513 2.6881 0.0072
year2006 4.9384 1.8503 2.6690 0.0076
year2007 4.6488 1.8505 2.5122 0.0120
year2008 4.8172 1.8494 2.6048 0.0092
year2009 5.0181 1.8479 2.7156 0.0066
year2010 5.4518 1.8460 2.9533 0.0031
year2011 5.4583 1.8432 2.9613 0.0031
year2012 5.2552 1.8426 2.8520 0.0043
year2013 5.1818 1.8422 2.8128 0.0049
year2014 5.7797 1.8426 3.1367 0.0017
year2015 6.1539 1.8427 3.3396 0.0008
year2016 6.2885 1.8426 3.4128 0.0006
year2017 6.5053 1.8430 3.5297 0.0004
year2018 7.1383 1.8434 3.8723 0.0001
year2019 7.1780 1.8443 3.8920 0.0001
year2020 7.5655 1.8485 4.0929 < 0.0001
year2021 7.6204 1.8511 4.1166 < 0.0001
year2022 7.4968 1.8561 4.0390 0.0001
year2023 7.9525 1.8595 4.2767 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.5313 8.5313 818.9814 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.5854 6.5854 43.0074 < 0.0001
s(days in milk t):paritymultiparous 14.3606 14.3606 132550.4282 < 0.0001
s(days in milk t):parityprimiparous 13.2311 13.2311 13978.4516 < 0.0001

Table D.13: Swiss Fleckvieh: Milk Yield - 1984-2023 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.2331 0.0891 2.62 0.0089
s(thi mean t0 3d):primiFx1 0.3444 0.1052 3.27 0.0011
s(days in milk ):multiFx1 1.7043 0.5298 3.22 0.0013
s(days in milk ):primiFx1 0.5335 0.5824 0.92 0.3596
Variance Component Estimated σ

σα 2.6926
σι 0.8616
σϕ 2.8181
s(thi mean t0 3d):multi 2.2342
s(days in milk ):primi 5.7610
s(days in milk ):multi 8.3967
s(thi mean t0 3d):primi 1.1497
Residual 3.1180

Table D.14: Swiss Fleckvieh: Milk Yield - 1984-2023 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.13: Swiss Fleckvieh: Milk Yield - 1984-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.14: Swiss Fleckvieh: Milk Yield - 1984 - 2023 - THI Effect and Lactation Curve
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D.3.2 Split Period: Until 2010 - After 2010
D.3.2.1 Split Period: 1984 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 16.9035 0.3658 46.2066 < 0.0001
parityprimiparous -2.7346 0.0138 -198.6779 < 0.0001
year1985 0.4515 0.2804 1.6103 0.1073
year1986 0.3178 0.3341 0.9510 0.3416
year1987 0.2380 0.3534 0.6736 0.5006
year1988 0.0232 0.3872 0.0600 0.9522
year1989 0.7996 0.3910 2.0451 0.0408
year1990 1.1652 0.3833 3.0397 0.0024
year1991 1.4053 0.3711 3.7868 0.0002
year1992 1.6217 0.3462 4.6846 < 0.0001
year1993 1.6209 0.3497 4.6347 < 0.0001
year1994 1.6641 0.3651 4.5578 < 0.0001
year1995 1.9199 0.4094 4.6900 < 0.0001
year1996 2.1351 0.4138 5.1595 < 0.0001
year1997 2.5677 0.4256 6.0334 < 0.0001
year1998 3.4175 0.4545 7.5191 < 0.0001
year1999 3.5626 0.4510 7.9000 < 0.0001
year2000 3.7240 0.4591 8.1121 < 0.0001
year2001 4.0732 0.4673 8.7165 < 0.0001
year2002 4.3548 0.4508 9.6605 < 0.0001
year2003 4.8981 0.4394 11.1471 < 0.0001
year2004 5.4440 0.4520 12.0437 < 0.0001
year2005 5.7965 0.4626 12.5311 < 0.0001
year2006 5.8531 0.4836 12.1040 < 0.0001
year2007 5.6656 0.4880 11.6103 < 0.0001
year2008 5.9522 0.4987 11.9352 < 0.0001
year2009 6.4429 0.5211 12.3638 < 0.0001
year2010 7.0430 0.5707 12.3418 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.8565 8.8565 828.8023 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.8104 6.8104 36.0865 < 0.0001
s(days in milk t):paritymultiparous 14.2457 14.2457 139197.9545 < 0.0001
s(days in milk t):parityprimiparous 13.2024 13.2024 14397.4338 < 0.0001

Table D.15: Swiss Fleckvieh: Milk Yield - 1984-2010 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.2333 0.0852 2.74 0.0062
s(thi mean t0 3d):primiFx1 0.2388 0.0987 2.42 0.0155
s(days in milk ):multiFx1 1.3398 0.5299 2.53 0.0114
s(days in milk ):primiFx1 0.3073 0.5533 0.56 0.5786
Variance Component Estimated σ

σα 2.5865
σι 0.8711
σϕ 2.5999
s(thi mean t0 3d):multi 3.8918
s(days in milk ):primi 5.4281
s(days in milk ):multi 7.5874
s(thi mean t0 3d):primi 1.1463
Residual 2.9720

Table D.16: Swiss Fleckvieh: Milk Yield - 1984-2010 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.15: Swiss Fleckvieh: Milk Yield - 1984-2010 - Diagnostic Plot



Models 92

THI Effect and Lactation Curve

Figure D.16: Swiss Fleckvieh: Milk Yield - 1984 - 2010 - THI Effect and Lactation Curve
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D.3.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 21.7530 0.2595 83.8176 < 0.0001
parityprimiparous -3.3595 0.0149 -224.7296 < 0.0001
year2012 -0.1631 0.3056 -0.5337 0.5936
year2013 -0.3339 0.2926 -1.1414 0.2537
year2014 0.2384 0.2906 0.8203 0.4121
year2015 0.4961 0.2957 1.6777 0.0934
year2016 0.8626 0.2984 2.8910 0.0038
year2017 1.2313 0.2939 4.1894 < 0.0001
year2018 1.6165 0.2967 5.4488 < 0.0001
year2019 1.7695 0.2943 6.0121 < 0.0001
year2020 2.0975 0.3029 6.9248 < 0.0001
year2021 2.3398 0.2847 8.2183 < 0.0001
year2022 2.1729 0.3008 7.2243 < 0.0001
year2023 2.3855 0.2954 8.0764 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.1653 8.1653 699.8806 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.5967 6.5967 37.1793 < 0.0001
s(days in milk t):paritymultiparous 14.5202 14.5202 113726.1561 < 0.0001
s(days in milk t):parityprimiparous 13.5621 13.5621 11375.9787 < 0.0001

Table D.17: Swiss Fleckvieh: Milk Yield - 2011-2023 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.1716 0.0901 1.91 0.0568
s(thi mean t0 3d):primiFx1 -0.2638 0.1058 -2.49 0.0126
s(days in milk ):multiFx1 3.0173 0.4977 6.06 < 1e-08
s(days in milk ):primiFx1 3.2102 0.6274 5.12 < 1e-06
Variance Component Estimated σ

σα 2.7938
σι 1.0653
σϕ 3.2540
s(thi mean t0 3d):multi 1.8095
s(days in milk ):primi 7.0409
s(days in milk ):multi 9.4413
s(thi mean t0 3d):primi 1.2895
Residual 3.4929

Table D.18: Swiss Fleckvieh: Milk Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.17: Swiss Fleckvieh: Milk Yield - 2011-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.18: Swiss Fleckvieh: Milk Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.4 Swiss Fleckvieh: ECM Yield
D.4.1 Full Period: 1984-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 18.9428 2.0368 9.3002 < 0.0001
parityprimiparous -3.3689 0.0142 -236.8632 < 0.0001
year1985 0.4371 2.0474 0.2135 0.8309
year1986 0.3102 2.0464 0.1516 0.8795
year1987 0.0716 2.0478 0.0349 0.9721
year1988 -0.3584 2.0554 -0.1744 0.8616
year1989 0.4960 2.0565 0.2412 0.8094
year1990 0.9176 2.0553 0.4464 0.6553
year1991 1.1455 2.0556 0.5572 0.5774
year1992 1.4593 2.0517 0.7113 0.4769
year1993 1.3829 2.0517 0.6740 0.5003
year1994 1.2177 2.0522 0.5933 0.5530
year1995 1.5433 2.0564 0.7505 0.4530
year1996 1.7761 2.0557 0.8640 0.3876
year1997 2.2786 2.0564 1.1081 0.2678
year1998 3.1880 2.0566 1.5502 0.1211
year1999 3.1331 2.0596 1.5212 0.1282
year2000 3.0081 2.0612 1.4594 0.1445
year2001 3.3840 2.0762 1.6299 0.1031
year2002 3.4445 2.0684 1.6653 0.0959
year2003 3.9752 2.0675 1.9227 0.0545
year2004 4.4635 2.0679 2.1585 0.0309
year2005 4.8537 2.0704 2.3444 0.0191
year2006 4.7686 2.0692 2.3046 0.0212
year2007 4.4191 2.0694 2.1354 0.0327
year2008 4.6589 2.0682 2.2526 0.0243
year2009 4.8424 2.0665 2.3433 0.0191
year2010 5.3358 2.0644 2.5847 0.0097
year2011 5.2852 2.0614 2.5639 0.0104
year2012 5.2468 2.0608 2.5460 0.0109
year2013 5.0911 2.0603 2.4711 0.0135
year2014 5.6526 2.0607 2.7430 0.0061
year2015 6.1039 2.0609 2.9618 0.0031
year2016 6.3861 2.0608 3.0989 0.0019
year2017 6.4411 2.0613 3.1249 0.0018
year2018 7.2593 2.0617 3.5210 0.0004
year2019 7.3393 2.0627 3.5581 0.0004
year2020 7.8516 2.0673 3.7979 0.0001
year2021 8.0252 2.0703 3.8763 0.0001
year2022 7.7722 2.0760 3.7437 0.0002
year2023 8.3910 2.0798 4.0346 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.5041 8.5041 234.1182 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.4177 6.4177 140.2851 < 0.0001
s(days in milk t):paritymultiparous 14.1442 14.1442 103387.1413 < 0.0001
s(days in milk t):parityprimiparous 12.3534 12.3534 9446.9365 < 0.0001

Table D.19: Swiss Fleckvieh: ECM Yield - 1984-2023 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.4379 0.0980 4.47 < 1e-05
s(thi mean t0 3d):primiFx1 0.5091 0.1123 4.53 < 1e-05
s(days in milk ):multiFx1 0.1549 0.5426 0.29 0.7752
s(days in milk ):primiFx1 -0.4183 0.5123 -0.82 0.4142
Variance Component Estimated σ

σα 2.7441
σι 0.9269
σϕ 3.2102
s(thi mean t0 3d):multi 2.3885
s(days in milk ):primi 4.1628
s(days in milk ):multi 7.4804
s(thi mean t0 3d):primi 1.1828
Residual 3.4443

Table D.20: Swiss Fleckvieh: ECM Yield - 1984-2023 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.19: Swiss Fleckvieh: ECM Yield - 1984-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.20: Swiss Fleckvieh: ECM Yield - 1984 - 2023 - THI Effect and Lactation Curve
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D.4.2 Split Period: Until 2010 - After 2010
D.4.2.1 Split Period: 1984 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 18.6574 0.3504 53.2489 < 0.0001
parityprimiparous -3.1387 0.0130 -242.3247 < 0.0001
year1985 0.5924 0.1977 2.9963 0.0027
year1986 0.5314 0.2944 1.8051 0.0711
year1987 0.2646 0.3287 0.8049 0.4209
year1988 -0.0889 0.3543 -0.2510 0.8018
year1989 0.7936 0.3810 2.0827 0.0373
year1990 1.2909 0.3896 3.3139 0.0009
year1991 1.5349 0.3928 3.9080 0.0001
year1992 1.8697 0.3991 4.6853 < 0.0001
year1993 1.7970 0.3757 4.7832 < 0.0001
year1994 1.6346 0.3831 4.2672 < 0.0001
year1995 1.9864 0.3616 5.4932 < 0.0001
year1996 2.2906 0.3599 6.3642 < 0.0001
year1997 2.8227 0.3546 7.9605 < 0.0001
year1998 3.7164 0.4462 8.3282 < 0.0001
year1999 3.7134 0.4226 8.7877 < 0.0001
year2000 3.6881 0.4271 8.6353 < 0.0001
year2001 4.0909 0.4333 9.4403 < 0.0001
year2002 4.1925 0.4333 9.6762 < 0.0001
year2003 4.7166 0.4412 10.6903 < 0.0001
year2004 5.3342 0.4443 12.0070 < 0.0001
year2005 5.8354 0.4797 12.1651 < 0.0001
year2006 5.8436 0.4795 12.1875 < 0.0001
year2007 5.5932 0.4985 11.2199 < 0.0001
year2008 5.9158 0.5046 11.7229 < 0.0001
year2009 6.4499 0.5281 12.2140 < 0.0001
year2010 7.1064 0.7553 9.4092 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.6994 8.6994 314.1151 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.1424 7.1424 143.5337 < 0.0001
s(days in milk t):paritymultiparous 13.5087 13.5087 161236.6570 < 0.0001
s(days in milk t):parityprimiparous 12.1975 12.1975 14112.6321 < 0.0001

Table D.21: Swiss Fleckvieh: ECM Yield - 1984-2010 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.4342 0.0866 5.01 < 1e-06
s(thi mean t0 3d):primiFx1 0.4046 0.1067 3.79 0.0002
s(days in milk ):multiFx1 -0.5972 0.4296 -1.39 0.1645
s(days in milk ):primiFx1 -0.5188 0.4339 -1.20 0.2319
Variance Component Estimated σ

σα 2.6516
σι 0.9288
σϕ 2.9589
s(thi mean t0 3d):multi 2.5013
s(days in milk ):primi 3.8774
s(days in milk ):multi 7.1478
s(thi mean t0 3d):primi 1.2666
Residual 3.2839

Table D.22: Swiss Fleckvieh: ECM Yield - 1984-2010 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.21: Swiss Fleckvieh: ECM Yield - 1984-2010 - Diagnostic Plot



Models 101

THI Effect and Lactation Curve

Figure D.22: Swiss Fleckvieh: ECM Yield - 1984 - 2010 - THI Effect and Lactation Curve
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D.4.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 23.9154 0.2931 81.5860 < 0.0001
parityprimiparous -3.9004 0.0167 -232.8837 < 0.0001
year2012 -0.0690 0.3447 -0.2002 0.8413
year2013 -0.3623 0.3299 -1.0981 0.2722
year2014 0.1886 0.3276 0.5756 0.5649
year2015 0.5104 0.3329 1.5333 0.1252
year2016 0.9654 0.3357 2.8755 0.0040
year2017 1.2575 0.3307 3.8024 0.0001
year2018 1.7924 0.3342 5.3623 < 0.0001
year2019 1.9137 0.3315 5.7726 < 0.0001
year2020 2.3420 0.3412 6.8648 < 0.0001
year2021 2.6223 0.3210 8.1692 < 0.0001
year2022 2.3548 0.3389 6.9490 < 0.0001
year2023 2.6795 0.3323 8.0634 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 7.9356 7.9356 208.7322 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.5668 6.5668 165.3686 < 0.0001
s(days in milk t):paritymultiparous 13.4184 13.4184 85993.6942 < 0.0001
s(days in milk t):parityprimiparous 12.3905 12.3905 6667.4461 < 0.0001

Table D.23: Swiss Fleckvieh: ECM Yield - 2011-2023 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.0875 0.0974 -0.90 0.3691
s(thi mean t0 3d):primiFx1 -0.5661 0.1180 -4.80 < 1e-05
s(days in milk ):multiFx1 -0.3719 0.4377 -0.85 0.3955
s(days in milk ):primiFx1 1.7240 0.5478 3.15 0.0017
Variance Component Estimated σ

σα 2.7517
σι 1.1372
σϕ 3.7572
s(thi mean t0 3d):multi 1.7293
s(days in milk ):primi 5.4432
s(days in milk ):multi 7.1565
s(thi mean t0 3d):primi 1.4283
Residual 3.9215

Table D.24: Swiss Fleckvieh: ECM Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.23: Swiss Fleckvieh: ECM Yield - 2011 - 2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.24: Swiss Fleckvieh: ECM Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.5 Brown Swiss: Milk Yield
D.5.1 Full Period: 1982-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 12.9694 0.7576 17.1190 < 0.0001
parityprimiparous -2.5964 0.0086 -301.9207 < 0.0001
year1983 1.9968 0.5636 3.5432 0.0004
year1984 2.5867 0.7005 3.6927 0.0002
year1985 3.0365 0.7138 4.2538 < 0.0001
year1986 3.0073 0.7181 4.1878 < 0.0001
year1987 2.8618 0.7298 3.9212 0.0001
year1988 2.8946 0.7369 3.9279 0.0001
year1989 3.4588 0.7441 4.6483 < 0.0001
year1990 3.6510 0.7641 4.7781 < 0.0001
year1991 3.9590 0.7684 5.1519 < 0.0001
year1992 4.0727 0.7695 5.2926 < 0.0001
year1993 4.1564 0.7719 5.3844 < 0.0001
year1994 4.1695 0.7816 5.3344 < 0.0001
year1995 4.3510 0.7962 5.4648 < 0.0001
year1996 4.3577 0.7996 5.4499 < 0.0001
year1997 4.9766 0.8017 6.2072 < 0.0001
year1998 5.6956 0.8013 7.1077 < 0.0001
year1999 5.5569 0.8014 6.9344 < 0.0001
year2000 5.7601 0.8018 7.1842 < 0.0001
year2001 6.4392 0.8024 8.0250 < 0.0001
year2002 6.6584 0.7975 8.3487 < 0.0001
year2003 6.9133 0.7978 8.6650 < 0.0001
year2004 7.4849 0.8011 9.3438 < 0.0001
year2005 7.4077 0.8009 9.2494 < 0.0001
year2006 7.4445 0.8009 9.2951 < 0.0001
year2007 7.4704 0.8002 9.3360 < 0.0001
year2008 7.7316 0.8007 9.6564 < 0.0001
year2009 7.9143 0.8012 9.8778 < 0.0001
year2010 7.8865 0.8044 9.8047 < 0.0001
year2011 8.1415 0.8138 10.0046 < 0.0001
year2012 8.4769 0.8247 10.2784 < 0.0001
year2013 8.2752 0.8316 9.9513 < 0.0001
year2014 8.6468 0.8244 10.4891 < 0.0001
year2015 8.7346 0.8189 10.6665 < 0.0001
year2016 8.9358 0.8185 10.9170 < 0.0001
year2017 9.4246 0.8234 11.4456 < 0.0001
year2018 9.7763 0.8237 11.8692 < 0.0001
year2019 9.8116 0.8319 11.7948 < 0.0001
year2020 9.9146 0.8356 11.8650 < 0.0001
year2021 10.1348 0.8437 12.0121 < 0.0001
year2022 9.9886 0.8499 11.7524 < 0.0001
year2023 10.3002 0.8540 12.0610 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 7.8318 7.8318 301.8503 < 0.0001
s(thi mean t0 3d):parityprimiparous 5.6701 5.6701 39.5730 < 0.0001
s(days in milk t):paritymultiparous 14.6580 14.6580 115662.1015 < 0.0001
s(days in milk t):parityprimiparous 14.2764 14.2764 14852.7179 < 0.0001

Table D.25: Brown Swiss: Milk Yield - 1982-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.0329 0.0751 -0.44 0.6613
s(thi mean t0 3d):primiFx1 -0.1460 0.0792 -1.84 0.0653
s(days in milk ):multiFx1 3.1329 0.3803 8.24 < 1e-15
s(days in milk ):primiFx1 4.9629 0.5562 8.92 < 1e-18
Variance Component Estimated σ

σα 2.5454
σι 1.0788
σϕ 2.6594
s(thi mean t0 3d):multi 1.1793
s(days in milk ):primi 8.9385
s(days in milk ):multi 8.7987
s(thi mean t0 3d):primi 0.7122
Residual 3.0960

Table D.26: Brown Swiss: Milk Yield - 1982-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.25: Brown Swiss: Milk Yield - 1982-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.26: Brown Swiss: Milk Yield - 1982 - 2023 - THI Effect and Lactation Curve
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D.5.2 Split Period: Until 2010 - After 2010
D.5.2.1 Split Period: 1982 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 12.3247 0.4735 26.0294 < 0.0001
parityprimiparous -2.4485 0.0075 -325.8224 < 0.0001
year1983 2.3555 0.2880 8.1793 < 0.0001
year1984 3.0902 0.3440 8.9824 < 0.0001
year1985 3.5151 0.3664 9.5927 < 0.0001
year1986 3.4948 0.4159 8.4025 < 0.0001
year1987 3.3965 0.4621 7.3505 < 0.0001
year1988 3.4378 0.4688 7.3334 < 0.0001
year1989 4.0267 0.4867 8.2734 < 0.0001
year1990 4.2713 0.4891 8.7333 < 0.0001
year1991 4.6013 0.4934 9.3264 < 0.0001
year1992 4.7541 0.4960 9.5850 < 0.0001
year1993 4.8388 0.5027 9.6262 < 0.0001
year1994 4.8777 0.5096 9.5718 < 0.0001
year1995 5.0237 0.5100 9.8508 < 0.0001
year1996 5.0527 0.5128 9.8541 < 0.0001
year1997 5.6594 0.5195 10.8943 < 0.0001
year1998 6.3969 0.5163 12.3888 < 0.0001
year1999 6.3501 0.5144 12.3444 < 0.0001
year2000 6.5902 0.5145 12.8081 < 0.0001
year2001 7.3556 0.5128 14.3432 < 0.0001
year2002 7.5783 0.5121 14.7999 < 0.0001
year2003 7.8819 0.5125 15.3796 < 0.0001
year2004 8.3994 0.5135 16.3576 < 0.0001
year2005 8.3719 0.5238 15.9815 < 0.0001
year2006 8.4540 0.5307 15.9291 < 0.0001
year2007 8.5350 0.5307 16.0833 < 0.0001
year2008 8.9487 0.5369 16.6667 < 0.0001
year2009 9.2918 0.5435 17.0971 < 0.0001
year2010 9.4000 0.5478 17.1585 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.5317 8.5317 348.8165 < 0.0001
s(thi mean t0 3d):parityprimiparous 5.9995 5.9995 24.7061 < 0.0001
s(days in milk t):paritymultiparous 14.5636 14.5636 128068.7551 < 0.0001
s(days in milk t):parityprimiparous 14.0529 14.0529 17306.6859 < 0.0001

Table D.27: Brown Swiss: Milk Yield - 1982-2010 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.2406 0.0789 3.05 0.0023
s(thi mean t0 3d):primiFx1 0.1624 0.0793 2.05 0.0407
s(days in milk ):multiFx1 2.2987 0.3918 5.87 < 1e-08
s(days in milk ):primiFx1 3.1749 0.5430 5.85 < 1e-08
Variance Component Estimated σ

σα 2.4405
σι 1.0394
σϕ 2.4162
s(thi mean t0 3d):multi 1.8846
s(days in milk ):primi 7.3526
s(days in milk ):multi 7.7494
s(thi mean t0 3d):primi 0.7307
Residual 2.8776

Table D.28: Brown Swiss: Milk Yield - 1982-2010 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.27: Brown Swiss: Milk Yield - 1982-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.28: Brown Swiss: Milk Yield - 1982 - 2010 - THI Effect and Lactation Curve
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D.5.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 21.2111 0.2414 87.8540 < 0.0001
parityprimiparous -2.8924 0.0156 -185.6574 < 0.0001
year2012 0.2441 0.2084 1.1714 0.2415
year2013 0.0342 0.2784 0.1229 0.9022
year2014 0.4650 0.3250 1.4306 0.1526
year2015 0.5156 0.3134 1.6453 0.0999
year2016 0.7994 0.3036 2.6328 0.0085
year2017 1.1041 0.2984 3.7003 0.0002
year2018 1.6417 0.2974 5.5193 < 0.0001
year2019 1.8518 0.3009 6.1546 < 0.0001
year2020 1.8166 0.3105 5.8508 < 0.0001
year2021 2.0801 0.2758 7.5430 < 0.0001
year2022 1.7860 0.3374 5.2928 < 0.0001
year2023 2.0136 0.3992 5.0434 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.1345 8.1345 248.1362 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.1359 6.1359 53.3577 < 0.0001
s(days in milk t):paritymultiparous 14.7627 14.7627 96671.5767 < 0.0001
s(days in milk t):parityprimiparous 14.2234 14.2234 9759.0387 < 0.0001

Table D.29: Brown Swiss: Milk Yield - 2011-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.0611 0.0815 0.75 0.4535
s(thi mean t0 3d):primiFx1 -0.1991 0.0940 -2.12 0.0341
s(days in milk ):multiFx1 4.8333 0.3724 12.98 < 1e-37
s(days in milk ):primiFx1 5.2524 0.5628 9.33 < 1e-19
Variance Component Estimated σ

σα 2.6594
σι 1.1640
σϕ 3.3349
s(thi mean t0 3d):multi 1.6731
s(days in milk ):primi 9.1749
s(days in milk ):multi 10.8600
s(thi mean t0 3d):primi 1.0195
Residual 3.5347

Table D.30: Brown Swiss: Milk Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.29: Brown Swiss: Milk Yield - 2011-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.30: Brown Swiss: Milk Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.6 Brown Swiss: ECM Yield
D.6.1 Full Period: 1982-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 14.5118 0.8535 17.0028 < 0.0001
parityprimiparous -2.9261 0.0097 -302.9145 < 0.0001
year1983 2.1332 0.6325 3.3729 0.0007
year1984 2.6187 0.7871 3.3272 0.0009
year1985 3.1363 0.8022 3.9096 0.0001
year1986 3.0575 0.8070 3.7887 0.0002
year1987 2.8836 0.8204 3.5151 0.0004
year1988 2.8943 0.8284 3.4937 0.0005
year1989 3.5360 0.8366 4.2266 < 0.0001
year1990 3.8219 0.8595 4.4468 < 0.0001
year1991 4.1067 0.8646 4.7501 < 0.0001
year1992 4.2306 0.8658 4.8865 < 0.0001
year1993 4.2739 0.8685 4.9207 < 0.0001
year1994 4.0330 0.8796 4.5849 < 0.0001
year1995 4.2135 0.8966 4.6996 < 0.0001
year1996 4.2852 0.9007 4.7578 < 0.0001
year1997 4.8949 0.9033 5.4190 < 0.0001
year1998 5.8103 0.9031 6.4340 < 0.0001
year1999 5.5766 0.9031 6.1749 < 0.0001
year2000 5.5808 0.9036 6.1764 < 0.0001
year2001 6.5297 0.9042 7.2213 < 0.0001
year2002 6.6744 0.8989 7.4254 < 0.0001
year2003 6.8026 0.8992 7.5648 < 0.0001
year2004 7.4423 0.9029 8.2427 < 0.0001
year2005 7.4488 0.9029 8.2496 < 0.0001
year2006 7.5081 0.9031 8.3140 < 0.0001
year2007 7.4430 0.9024 8.2480 < 0.0001
year2008 7.9538 0.9030 8.8083 < 0.0001
year2009 8.0856 0.9036 8.9479 < 0.0001
year2010 8.0415 0.9072 8.8641 < 0.0001
year2011 8.3067 0.9179 9.0496 < 0.0001
year2012 8.7580 0.9302 9.4156 < 0.0001
year2013 8.4529 0.9378 9.0131 < 0.0001
year2014 8.8439 0.9298 9.5112 < 0.0001
year2015 8.9348 0.9238 9.6715 < 0.0001
year2016 9.2377 0.9234 10.0036 < 0.0001
year2017 9.7481 0.9290 10.4931 < 0.0001
year2018 10.1761 0.9294 10.9496 < 0.0001
year2019 10.2181 0.9391 10.8810 < 0.0001
year2020 10.3778 0.9435 10.9995 < 0.0001
year2021 10.6682 0.9527 11.1979 < 0.0001
year2022 10.4038 0.9597 10.8405 < 0.0001
year2023 10.8333 0.9643 11.2343 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 7.8150 7.8150 109.8428 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.1480 6.1480 164.9388 < 0.0001
s(days in milk t):paritymultiparous 13.6324 13.6324 91224.2937 < 0.0001
s(days in milk t):parityprimiparous 13.2448 13.2448 9763.6690 < 0.0001

Table D.31: Brown Swiss: ECM Yield - 1982-2023 - GAMM model summary without random effect
terms.



Models 115

Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.2537 0.0841 -3.02 0.0026
s(thi mean t0 3d):primiFx1 -0.3068 0.0985 -3.12 0.0018
s(days in milk ):multiFx1 0.2544 0.3388 0.75 0.4528
s(days in milk ):primiFx1 2.7607 0.4988 5.53 < 1e-07
Variance Component Estimated σ

σα 2.6789
σι 1.1420
σϕ 3.0825
s(thi mean t0 3d):multi 1.3120
s(days in milk ):primi 7.4999
s(days in milk ):multi 7.2936
s(thi mean t0 3d):primi 0.9745
Residual 3.4801

Table D.32: Brown Swiss: ECM Yield - 1982-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.31: Brown Swiss: ECM Yield - 1982-2023 - Diagnostic Plot



Models 116

THI Effect and Lactation Curve

Figure D.32: Brown Swiss: ECM Yield - 1982 - 2023 - THI Effect and Lactation Curve
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D.6.2 Split Period: Until 2010 - After 2010
D.6.2.1 Split Period: 1982 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 13.9011 0.6172 22.5214 < 0.0001
parityprimiparous -2.7288 0.0073 -375.8442 < 0.0001
year1983 2.3196 0.3994 5.8081 < 0.0001
year1984 2.9601 0.5001 5.9189 < 0.0001
year1985 3.4533 0.5081 6.7972 < 0.0001
year1986 3.3724 0.5674 5.9435 < 0.0001
year1987 3.2407 0.5760 5.6260 < 0.0001
year1988 3.2757 0.6297 5.2018 < 0.0001
year1989 3.9381 0.6372 6.1799 < 0.0001
year1990 4.2920 0.6390 6.7167 < 0.0001
year1991 4.6150 0.6503 7.0969 < 0.0001
year1992 4.7898 0.6440 7.4375 < 0.0001
year1993 4.8166 0.6435 7.4849 < 0.0001
year1994 4.5930 0.6392 7.1860 < 0.0001
year1995 4.7651 0.6402 7.4435 < 0.0001
year1996 4.9309 0.6414 7.6879 < 0.0001
year1997 5.5129 0.6414 8.5948 < 0.0001
year1998 6.4300 0.6504 9.8868 < 0.0001
year1999 6.2791 0.6555 9.5797 < 0.0001
year2000 6.3019 0.6587 9.5676 < 0.0001
year2001 7.3628 0.6536 11.2656 < 0.0001
year2002 7.4858 0.6503 11.5106 < 0.0001
year2003 7.7060 0.6596 11.6835 < 0.0001
year2004 8.2838 0.6477 12.7905 < 0.0001
year2005 8.3527 0.6448 12.9545 < 0.0001
year2006 8.3868 0.6387 13.1301 < 0.0001
year2007 8.4348 0.6407 13.1652 < 0.0001
year2008 9.0647 0.6390 14.1859 < 0.0001
year2009 9.4157 0.6510 14.4640 < 0.0001
year2010 9.5503 0.6410 14.8993 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.5445 8.5445 171.0640 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.2808 7.2808 110.8468 < 0.0001
s(days in milk t):paritymultiparous 13.6110 13.6110 145596.5407 < 0.0001
s(days in milk t):parityprimiparous 13.1557 13.1557 16561.7603 < 0.0001

Table D.33: Brown Swiss: ECM Yield - 1982-2010 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.3322 0.0725 4.58 < 1e-05
s(thi mean t0 3d):primiFx1 0.2115 0.0921 2.30 0.0216
s(days in milk ):multiFx1 0.4571 0.2996 1.53 0.1271
s(days in milk ):primiFx1 -1.0489 0.4208 -2.49 0.0127
Variance Component Estimated σ

σα 2.53951
σι 1.09642
σϕ 2.78563
s(thi mean t0 3d):multi 1.79665
s(days in milk ):primi 5.75322
s(days in milk ):multi 5.99473
s(thi mean t0 3d):primi 1.19425
Residual 3.18356

Table D.34: Brown Swiss: ECM Yield - 1982-2010 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.33: Brown Swiss: ECM Yield - 1982-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.34: Brown Swiss: ECM Yield - 1982 - 2010 - THI Effect and Lactation Curve
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D.6.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 23.4859 0.2774 84.6766 < 0.0001
parityprimiparous -3.3904 0.0179 -189.6220 < 0.0001
year2012 0.3216 0.2395 1.3429 0.1793
year2013 -0.0251 0.3195 -0.0786 0.9374
year2014 0.3655 0.3711 0.9849 0.3247
year2015 0.3975 0.3590 1.1073 0.2682
year2016 0.7377 0.3481 2.1191 0.0341
year2017 1.0088 0.3421 2.9486 0.0032
year2018 1.6322 0.3411 4.7847 < 0.0001
year2019 1.8740 0.3446 5.4377 < 0.0001
year2020 1.7913 0.3555 5.0392 < 0.0001
year2021 2.1038 0.3165 6.6463 < 0.0001
year2022 1.6923 0.3868 4.3751 < 0.0001
year2023 1.9646 0.4575 4.2945 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.1229 8.1229 143.3874 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.2808 6.2808 220.4726 < 0.0001
s(days in milk t):paritymultiparous 13.8166 13.8166 68629.0617 < 0.0001
s(days in milk t):parityprimiparous 13.1007 13.1007 5270.4166 < 0.0001

Table D.35: Brown Swiss: ECM Yield - 2011-2023 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.1276 0.0935 -1.36 0.1723
s(thi mean t0 3d):primiFx1 -0.4146 0.1111 -3.73 0.0002
s(days in milk ):multiFx1 0.9924 0.3473 2.86 0.0043
s(days in milk ):primiFx1 2.9394 0.5111 5.75 < 1e-08
Variance Component Estimated σ

σα 2.7558
σι 1.2690
σϕ 3.8693
s(thi mean t0 3d):multi 1.9064
s(days in milk ):primi 7.3548
s(days in milk ):multi 11.0965
s(thi mean t0 3d):primi 1.2442
Residual 4.0650

Table D.36: Brown Swiss: ECM Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.35: Brown Swiss: ECM Yield - 2011 - 2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.36: Brown Swiss: ECM Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.7 Simmental: Milk Yield
D.7.1 Full Period: 1984-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 15.9675 0.3774 42.3090 < 0.0001
parityprimiparous -2.6079 0.0098 -266.9804 < 0.0001
year1984 0.9203 0.2871 3.2051 0.0014
year1986 0.6316 0.3878 1.6285 0.1034
year1987 0.4807 0.3976 1.2091 0.2266
year1988 0.1430 0.4124 0.3469 0.7287
year1989 0.6980 0.4029 1.7322 0.0832
year1990 1.0472 0.4058 2.5805 0.0099
year1991 1.2842 0.4066 3.1584 0.0016
year1992 1.4749 0.4292 3.4363 0.0006
year1993 1.3251 0.4063 3.2615 0.0011
year1994 1.2250 0.4074 3.0071 0.0026
year1995 1.2876 0.4092 3.1463 0.0017
year1996 1.2205 0.4347 2.8075 0.0050
year1997 1.6763 0.4297 3.9011 0.0001
year1998 2.1129 0.4163 5.0758 < 0.0001
year1999 2.3006 0.4118 5.5872 < 0.0001
year2000 2.2606 0.4068 5.5575 < 0.0001
year2001 2.3638 0.4055 5.8286 < 0.0001
year2002 2.2778 0.4074 5.5905 < 0.0001
year2003 2.4894 0.4078 6.1046 < 0.0001
year2004 3.2022 0.4165 7.6879 < 0.0001
year2005 3.3627 0.4085 8.2309 < 0.0001
year2006 3.4238 0.4055 8.4429 < 0.0001
year2007 3.1380 0.4050 7.7479 < 0.0001
year2008 3.3498 0.4039 8.2927 < 0.0001
year2009 3.5657 0.4032 8.8433 < 0.0001
year2010 4.0337 0.4039 9.9874 < 0.0001
year2011 3.8485 0.4045 9.5134 < 0.0001
year2012 3.9868 0.3999 9.9703 < 0.0001
year2013 3.8586 0.4048 9.5316 < 0.0001
year2014 4.0453 0.4114 9.8322 < 0.0001
year2015 3.8068 0.4122 9.2351 < 0.0001
year2016 4.3075 0.4139 10.4076 < 0.0001
year2017 4.2544 0.4077 10.4348 < 0.0001
year2018 4.7025 0.4079 11.5286 < 0.0001
year2019 4.7448 0.4078 11.6354 < 0.0001
year2020 4.9568 0.4094 12.1061 < 0.0001
year2021 5.1777 0.4102 12.6215 < 0.0001
year2022 4.8714 0.4000 12.1801 < 0.0001
year2023 5.1469 0.3917 13.1384 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.5481 8.5481 861.5266 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.7193 7.7193 32.7458 < 0.0001
s(days in milk t):paritymultiparous 14.3882 14.3882 116548.6940 < 0.0001
s(days in milk t):parityprimiparous 13.1806 13.1806 13312.7922 < 0.0001

Table D.37: Simmental: Milk Yield - 1984-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.4066 0.0746 5.45 < 1e-07
s(thi mean t0 3d):primiFx1 0.3954 0.1118 3.54 0.0004
s(days in milk ):multiFx1 1.1054 0.4915 2.25 0.0245
s(days in milk ):primiFx1 0.9155 0.6116 1.50 0.1344
Variance Component Estimated σ

σα 2.3244
σι 0.9308
σϕ 2.3149
s(thi mean t0 3d):multi 1.9660
s(days in milk ):primi 5.8293
s(days in milk ):multi 8.1220
s(thi mean t0 3d):primi 1.7588
Residual 2.6876

Table D.38: Simmental: Milk Yield - 1984-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.37: Simmental: Milk Yield - 1984-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.38: Simmental: Milk Yield - 1984 - 2023 - THI Effect and Lactation Curve



Models 126

D.7.2 Split Period: Until 2010 - After 2010
D.7.2.1 Split Period: 1984 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 15.9784 0.4258 37.5277 < 0.0001
parityprimiparous -2.5042 0.0100 -249.9160 < 0.0001
year1984 0.9215 0.3893 2.3672 0.0179
year1986 0.6345 0.4368 1.4527 0.1463
year1987 0.4655 0.4397 1.0586 0.2898
year1988 0.1797 0.4414 0.4071 0.6839
year1989 0.7303 0.4434 1.6470 0.0995
year1990 1.1013 0.4387 2.5105 0.0121
year1991 1.3407 0.4369 3.0687 0.0022
year1992 1.5351 0.4371 3.5119 0.0004
year1993 1.3704 0.4392 3.1204 0.0018
year1994 1.3045 0.4384 2.9758 0.0029
year1995 1.4003 0.4389 3.1903 0.0014
year1996 1.3452 0.4413 3.0480 0.0023
year1997 1.8067 0.4469 4.0431 0.0001
year1998 2.2060 0.4443 4.9652 < 0.0001
year1999 2.5341 0.4414 5.7412 < 0.0001
year2000 2.5448 0.4390 5.7967 < 0.0001
year2001 2.6946 0.4418 6.0994 < 0.0001
year2002 2.6384 0.4433 5.9518 < 0.0001
year2003 2.8456 0.4433 6.4194 < 0.0001
year2004 3.5668 0.4430 8.0522 < 0.0001
year2005 3.7954 0.4439 8.5501 < 0.0001
year2006 3.8476 0.4474 8.6001 < 0.0001
year2007 3.5988 0.4460 8.0694 < 0.0001
year2008 3.8797 0.4455 8.7077 < 0.0001
year2009 4.2752 0.4362 9.7998 < 0.0001
year2010 4.7705 0.4345 10.9791 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.4698 8.4698 882.5620 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.9972 6.9972 21.0979 < 0.0001
s(days in milk t):paritymultiparous 14.2216 14.2216 126171.7037 < 0.0001
s(days in milk t):parityprimiparous 13.1489 13.1489 13920.0800 < 0.0001

Table D.39: Simmental: Milk Yield - 1984-2010 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.2377 0.0708 3.36 0.0008
s(thi mean t0 3d):primiFx1 0.2580 0.0954 2.70 0.0068
s(days in milk ):multiFx1 0.5757 0.4440 1.30 0.1948
s(days in milk ):primiFx1 0.9909 0.6147 1.61 0.1070
Variance Component Estimated σ

σα 2.2821
σι 0.9230
σϕ 2.1943
s(thi mean t0 3d):multi 1.6772
s(days in milk ):primi 5.6179
s(days in milk ):multi 6.4897
s(thi mean t0 3d):primi 1.1494
Residual 2.5693

Table D.40: Simmental: Milk Yield - 1984-2010 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.39: Simmental: Milk Yield - 1984-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.40: Simmental: Milk Yield - 1984 - 2010 - THI Effect and Lactation Curve
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D.7.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 18.3596 0.0826 222.1525 < 0.0001
parityprimiparous -2.6921 0.0109 -246.6978 < 0.0001
year2012 0.0700 0.0591 1.1836 0.2366
year2013 0.0164 0.0958 0.1710 0.8642
year2014 0.2385 0.1073 2.2238 0.0262
year2015 0.1254 0.0839 1.4934 0.1353
year2016 0.6132 0.0918 6.6825 < 0.0001
year2017 0.6244 0.0918 6.8011 < 0.0001
year2018 1.1168 0.0980 11.3952 < 0.0001
year2019 1.1127 0.0955 11.6544 < 0.0001
year2020 1.3047 0.1000 13.0527 < 0.0001
year2021 1.4950 0.0997 14.9930 < 0.0001
year2022 1.1976 0.0945 12.6703 < 0.0001
year2023 1.4872 0.0802 18.5463 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.3541 8.3541 391.5958 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.0274 6.0274 22.5263 < 0.0001
s(days in milk t):paritymultiparous 14.3595 14.3595 100520.4244 < 0.0001
s(days in milk t):parityprimiparous 13.4730 13.4730 11749.9799 < 0.0001

Table D.41: Simmental: Milk Yield - 2011-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.0770 0.0733 1.05 0.2940
s(thi mean t0 3d):primiFx1 0.1591 0.0814 1.95 0.0508
s(days in milk ):multiFx1 1.3572 0.4931 2.75 0.0059
s(days in milk ):primiFx1 2.1270 0.6593 3.23 0.0013
Variance Component Estimated σ

σα 2.3114
σι 1.1371
σϕ 2.4668
s(thi mean t0 3d):multi 1.4788
s(days in milk ):primi 7.0534
s(days in milk ):multi 8.1063
s(thi mean t0 3d):primi 0.7316
Residual 2.9532

Table D.42: Simmental: Milk Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.41: Simmental: Milk Yield - 2011-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.42: Simmental: Milk Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.8 Simmental: ECM Yield
D.8.1 Full Period: 1984-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 17.3463 0.4168 41.6191 < 0.0001
parityprimiparous -2.8031 0.0109 -256.6450 < 0.0001
year1985 1.1002 0.3206 3.4314 0.0006
year1986 0.8431 0.4286 1.9673 0.0492
year1987 0.5448 0.4390 1.2409 0.2146
year1988 0.0621 0.4546 0.1367 0.8913
year1989 0.6395 0.4445 1.4387 0.1502
year1990 1.0405 0.4480 2.3225 0.0202
year1991 1.3119 0.4488 2.9232 0.0035
year1992 1.6163 0.4738 3.4113 0.0006
year1993 1.3841 0.4483 3.0874 0.0020
year1994 1.0855 0.4495 2.4146 0.0158
year1995 1.2936 0.4517 2.8636 0.0042
year1996 1.2306 0.4800 2.5636 0.0104
year1997 1.7871 0.4747 3.7650 0.0002
year1998 2.2238 0.4596 4.8381 < 0.0001
year1999 2.2729 0.4546 4.9995 < 0.0001
year2000 2.0493 0.4490 4.5637 < 0.0001
year2001 2.1391 0.4477 4.7782 < 0.0001
year2002 1.8902 0.4498 4.2022 < 0.0001
year2003 2.0632 0.4502 4.5826 < 0.0001
year2004 2.9511 0.4601 6.4139 < 0.0001
year2005 3.1733 0.4511 7.0352 < 0.0001
year2006 3.2050 0.4477 7.1595 < 0.0001
year2007 2.8582 0.4471 6.3929 < 0.0001
year2008 3.1862 0.4459 7.1458 < 0.0001
year2009 3.4087 0.4450 7.6596 < 0.0001
year2010 3.8999 0.4458 8.7483 < 0.0001
year2011 3.6452 0.4465 8.1632 < 0.0001
year2012 3.8669 0.4414 8.7608 < 0.0001
year2013 3.7437 0.4470 8.3750 < 0.0001
year2014 3.8601 0.4543 8.4967 < 0.0001
year2015 3.6287 0.4552 7.9723 < 0.0001
year2016 4.2878 0.4571 9.3804 < 0.0001
year2017 4.1688 0.4501 9.2620 < 0.0001
year2018 4.7404 0.4503 10.5272 < 0.0001
year2019 4.7584 0.4502 10.5698 < 0.0001
year2020 4.9984 0.4521 11.0565 < 0.0001
year2021 5.3068 0.4530 11.7150 < 0.0001
year2022 4.9208 0.4417 11.1416 < 0.0001
year2023 5.2629 0.4324 12.1704 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.5091 8.5091 334.0726 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.5562 7.5562 92.4732 < 0.0001
s(days in milk t):paritymultiparous 14.2496 14.2496 88397.0602 < 0.0001
s(days in milk t):parityprimiparous 12.7367 12.7367 9271.9910 < 0.0001

Table D.43: Simmental: ECM Yield - 1984-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.5650 0.0830 6.81 < 1e-10
s(thi mean t0 3d):primiFx1 0.4708 0.1217 3.87 0.0001
s(days in milk ):multiFx1 -0.0173 0.5234 -0.03 0.9736
s(days in milk ):primiFx1 0.3431 0.5953 0.58 0.5644
Variance Component Estimated σ

σα 2.3975
σι 0.9848
σϕ 2.5425
s(thi mean t0 3d):multi 2.0979
s(days in milk ):primi 5.1025
s(days in milk ):multi 7.8374
s(thi mean t0 3d):primi 1.7997
Residual 3.0088

Table D.44: Simmental: ECM Yield - 1984-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.43: Simmental: ECM Yield - 1984-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.44: Simmental: ECM Yield - 1984 - 2023 - THI Effect and Lactation Curve
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D.8.2 Split Period: Until 2010 - After 2010
D.8.2.1 Split Period: 1984 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 17.6518 0.3356 52.6054 < 0.0001
parityprimiparous -2.7015 0.0095 -285.4638 < 0.0001
year1985 0.7449 0.2830 2.6323 0.0085
year1986 0.5669 0.3411 1.6621 0.0965
year1987 0.2759 0.3455 0.7984 0.4247
year1988 -0.1349 0.3458 -0.3900 0.6965
year1989 0.4567 0.3473 1.3150 0.1885
year1990 0.8247 0.3452 2.3890 0.0169
year1991 1.1108 0.3452 3.2175 0.0013
year1992 1.4253 0.3471 4.1061 < 0.0001
year1993 1.1540 0.3502 3.2955 0.0010
year1994 0.8854 0.3472 2.5503 0.0108
year1995 1.1153 0.3486 3.1997 0.0014
year1996 1.0683 0.3510 3.0435 0.0023
year1997 1.6587 0.3518 4.7155 < 0.0001
year1998 2.0221 0.3516 5.7505 < 0.0001
year1999 2.2191 0.3543 6.2638 < 0.0001
year2000 2.0358 0.3583 5.6818 < 0.0001
year2001 2.1613 0.3604 5.9976 < 0.0001
year2002 1.8805 0.3652 5.1493 < 0.0001
year2003 1.9896 0.3643 5.4613 < 0.0001
year2004 2.9060 0.3691 7.8728 < 0.0001
year2005 3.1763 0.3692 8.6022 < 0.0001
year2006 3.1924 0.3586 8.9022 < 0.0001
year2007 2.8135 0.3422 8.2225 < 0.0001
year2008 3.1845 0.3442 9.2522 < 0.0001
year2009 3.5973 0.3447 10.4365 < 0.0001
year2010 4.1283 0.3976 10.3834 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.4730 8.4730 373.7582 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.8747 6.8747 135.1691 < 0.0001
s(days in milk t):paritymultiparous 13.4789 13.4789 140715.0549 < 0.0001
s(days in milk t):parityprimiparous 12.2782 12.2782 13970.4465 < 0.0001

Table D.45: Simmental: ECM Yield - 1984-2010 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.4424 0.0690 6.41 < 1e-09
s(thi mean t0 3d):primiFx1 0.3094 0.0905 3.42 0.0006
s(days in milk ):multiFx1 -1.2407 0.3672 -3.38 0.0007
s(days in milk ):primiFx1 0.1035 0.4848 0.21 0.8310
Variance Component Estimated σ

σα 2.3271
σι 0.9552
σϕ 2.4147
s(thi mean t0 3d):multi 1.7481
s(days in milk ):primi 4.2357
s(days in milk ):multi 6.0551
s(thi mean t0 3d):primi 1.1364
Residual 2.8692

Table D.46: Simmental: ECM Yield - 1984-2010 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.45: Simmental: ECM Yield - 1984-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.46: Simmental: ECM Yield - 1984 - 2010 - THI Effect and Lactation Curve
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D.8.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 19.8809 0.0919 216.2647 < 0.0001
parityprimiparous -2.9225 0.0124 -235.8837 < 0.0001
year2012 0.1301 0.0669 1.9433 0.0520
year2013 0.0432 0.1073 0.4030 0.6869
year2014 0.2435 0.1193 2.0409 0.0413
year2015 0.1024 0.0930 1.1009 0.2709
year2016 0.7162 0.1021 7.0183 < 0.0001
year2017 0.5992 0.1019 5.8777 < 0.0001
year2018 1.1769 0.1088 10.8135 < 0.0001
year2019 1.1368 0.1058 10.7401 < 0.0001
year2020 1.3493 0.1109 12.1624 < 0.0001
year2021 1.5988 0.1105 14.4715 < 0.0001
year2022 1.2219 0.1050 11.6420 < 0.0001
year2023 1.5644 0.0890 17.5860 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.3017 8.3017 136.1717 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.2560 6.2560 86.5741 < 0.0001
s(days in milk t):paritymultiparous 13.1598 13.1598 77606.0625 < 0.0001
s(days in milk t):parityprimiparous 12.0942 12.0942 8162.0032 < 0.0001

Table D.47: Simmental: ECM Yield - 2011-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.1768 0.0828 2.13 0.0328
s(thi mean t0 3d):primiFx1 0.2455 0.0968 2.53 0.0112
s(days in milk ):multiFx1 -1.7511 0.4264 -4.11 < 1e-04
s(days in milk ):primiFx1 0.3436 0.5476 0.63 0.5304
Variance Component Estimated σ

σα 2.3352
σι 1.2121
σϕ 2.8059
s(thi mean t0 3d):multi 1.6052
s(days in milk ):primi 4.8426
s(days in milk ):multi 5.7477
s(thi mean t0 3d):primi 0.9148
Residual 3.3644

Table D.48: Simmental: ECM Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.47: Simmental: ECM Yield - 2011 - 2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.48: Simmental: ECM Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.9 Original Braunvieh: Milk Yield
D.9.1 Full Period: 1982-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 14.6852 0.3830 38.3445 < 0.0001
parityprimiparous -2.8286 0.0084 -336.8236 < 0.0001
year1983 0.6430 0.2594 2.4790 0.0132
year1984 1.3296 0.3594 3.6993 0.0002
year1985 1.5697 0.4102 3.8268 0.0001
year1986 1.3617 0.3971 3.4293 0.0006
year1987 1.1349 0.3972 2.8571 0.0043
year1988 1.0051 0.3962 2.5371 0.0112
year1989 1.3474 0.3953 3.4086 0.0007
year1990 1.5443 0.3969 3.8914 0.0001
year1991 1.6956 0.3999 4.2405 < 0.0001
year1992 1.8865 0.4044 4.6653 < 0.0001
year1993 1.8705 0.4070 4.5959 < 0.0001
year1994 1.9129 0.4062 4.7093 < 0.0001
year1995 1.9594 0.4042 4.8482 < 0.0001
year1996 1.9151 0.4050 4.7290 < 0.0001
year1997 2.2722 0.4056 5.6027 < 0.0001
year1998 2.6225 0.4121 6.3631 < 0.0001
year1999 2.6031 0.4116 6.3245 < 0.0001
year2000 2.7243 0.4104 6.6383 < 0.0001
year2001 3.1854 0.4118 7.7345 < 0.0001
year2002 3.1050 0.4136 7.5078 < 0.0001
year2003 3.2604 0.4154 7.8494 < 0.0001
year2004 3.9208 0.4166 9.4114 < 0.0001
year2005 3.9771 0.4180 9.5156 < 0.0001
year2006 3.9585 0.4097 9.6610 < 0.0001
year2007 3.8381 0.4029 9.5267 < 0.0001
year2008 3.9184 0.3984 9.8362 < 0.0001
year2009 4.3397 0.3951 10.9831 < 0.0001
year2010 4.3655 0.4169 10.4716 < 0.0001
year2011 4.3907 0.4447 9.8727 < 0.0001
year2012 4.4644 0.4182 10.6752 < 0.0001
year2013 4.2845 0.4174 10.2637 < 0.0001
year2014 4.5024 0.4132 10.8971 < 0.0001
year2015 4.4539 0.4185 10.6419 < 0.0001
year2016 4.7123 0.4123 11.4289 < 0.0001
year2017 4.8402 0.4065 11.9066 < 0.0001
year2018 5.3225 0.4063 13.0998 < 0.0001
year2019 5.4832 0.4101 13.3688 < 0.0001
year2020 5.5730 0.4091 13.6236 < 0.0001
year2021 5.7938 0.4204 13.7827 < 0.0001
year2022 5.6597 0.4127 13.7129 < 0.0001
year2023 5.7643 0.3932 14.6596 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.2023 8.2023 499.7521 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.4380 6.4380 21.1385 < 0.0001
s(days in milk t):paritymultiparous 14.6571 14.6571 124999.1547 < 0.0001
s(days in milk t):parityprimiparous 13.7950 13.7950 10008.9324 < 0.0001

Table D.49: Original Braunvieh: Milk Yield - 1982-2023 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.1305 0.0684 -1.91 0.0563
s(thi mean t0 3d):primiFx1 -0.1859 0.1026 -1.81 0.0699
s(days in milk ):multiFx1 2.6617 0.3795 7.01 < 1e-11
s(days in milk ):primiFx1 2.6704 0.6406 4.17 < 1e-04
Variance Component Estimated σ

σα 2.2231
σι 0.7988
σϕ 2.2162
s(thi mean t0 3d):multi 1.3315
s(days in milk ):primi 7.6667
s(days in milk ):multi 8.4641
s(thi mean t0 3d):primi 1.0707
Residual 2.6754

Table D.50: Original Braunvieh: Milk Yield - 1982-2023 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.49: Original Braunvieh: Milk Yield - 1982-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.50: Original Braunvieh: Milk Yield - 1982 - 2023 - THI Effect and Lactation Curve
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D.9.2 Split Period: Until 2010 - After 2010
D.9.2.1 Split Period: 1982 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 15.0057 0.3198 46.9296 < 0.0001
parityprimiparous -2.7417 0.0075 -364.2785 < 0.0001
year1983 0.5319 0.1721 3.0909 0.0020
year1984 1.2212 0.2208 5.5306 < 0.0001
year1985 1.4377 0.3329 4.3192 < 0.0001
year1986 1.2237 0.3282 3.7284 0.0002
year1987 0.9991 0.3283 3.0434 0.0023
year1988 0.8693 0.3296 2.6375 0.0084
year1989 1.2663 0.3321 3.8124 0.0001
year1990 1.4339 0.3365 4.2620 < 0.0001
year1991 1.5848 0.3338 4.7480 < 0.0001
year1992 1.8142 0.3368 5.3870 < 0.0001
year1993 1.7912 0.3345 5.3554 < 0.0001
year1994 1.8160 0.3363 5.3998 < 0.0001
year1995 1.8604 0.3401 5.4700 < 0.0001
year1996 1.8582 0.3422 5.4305 < 0.0001
year1997 2.2074 0.3438 6.4205 < 0.0001
year1998 2.5319 0.3440 7.3593 < 0.0001
year1999 2.5909 0.3429 7.5555 < 0.0001
year2000 2.6876 0.3428 7.8407 < 0.0001
year2001 3.1647 0.3440 9.1995 < 0.0001
year2002 3.1748 0.3440 9.2291 < 0.0001
year2003 3.4029 0.3441 9.8881 < 0.0001
year2004 4.0428 0.3451 11.7149 < 0.0001
year2005 3.9998 0.3459 11.5618 < 0.0001
year2006 4.0530 0.3459 11.7161 < 0.0001
year2007 4.0568 0.3274 12.3917 < 0.0001
year2008 4.2064 0.3305 12.7275 < 0.0001
year2009 4.7048 0.3385 13.8992 < 0.0001
year2010 4.7805 0.3304 14.4669 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.3658 8.3658 547.3637 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.3881 6.3881 18.3421 < 0.0001
s(days in milk t):paritymultiparous 14.6588 14.6588 138414.9409 < 0.0001
s(days in milk t):parityprimiparous 13.5087 13.5087 9624.2220 < 0.0001

Table D.51: Original Braunvieh: Milk Yield - 1982-2010 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.1257 0.0623 2.02 0.0435
s(thi mean t0 3d):primiFx1 0.1133 0.0973 1.16 0.2441
s(days in milk ):multiFx1 1.6964 0.3555 4.77 < 1e-05
s(days in milk ):primiFx1 1.7743 0.6100 2.91 0.0036
Variance Component Estimated σ

σα 2.0336
σι 0.7981
σϕ 2.1854
s(thi mean t0 3d):multi 1.3954
s(days in milk ):primi 6.5182
s(days in milk ):multi 7.8722
s(thi mean t0 3d):primi 1.0305
Residual 2.4831

Table D.52: Original Braunvieh: Milk Yield - 1982-2010 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.51: Original Braunvieh: Milk Yield - 1982-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.52: Original Braunvieh: Milk Yield - 1982 - 2010 - THI Effect and Lactation Curve
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D.9.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 17.9663 0.1239 144.9573 < 0.0001
parityprimiparous -2.8764 0.0124 -231.5884 < 0.0001
year2012 0.1449 0.1266 1.1447 0.2523
year2013 0.0303 0.1310 0.2309 0.8174
year2014 0.3805 0.1363 2.7924 0.0052
year2015 0.3500 0.1331 2.6292 0.0086
year2016 0.5339 0.1412 3.7823 0.0002
year2017 0.7371 0.1440 5.1184 < 0.0001
year2018 1.3158 0.1364 9.6455 < 0.0001
year2019 1.4358 0.1278 11.2335 < 0.0001
year2020 1.6108 0.1456 11.0653 < 0.0001
year2021 1.7594 0.1381 12.7388 < 0.0001
year2022 1.5487 0.1387 11.1677 < 0.0001
year2023 1.7522 0.1237 14.1632 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.1325 8.1325 158.8789 < 0.0001
s(thi mean t0 3d):parityprimiparous 5.8676 5.8676 31.1287 < 0.0001
s(days in milk t):paritymultiparous 14.6080 14.6080 102220.3143 < 0.0001
s(days in milk t):parityprimiparous 13.8345 13.8345 10900.9324 < 0.0001

Table D.53: Original Braunvieh: Milk Yield - 2011-2023 - GAMM model summary without random effect
terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.1512 0.0805 1.88 0.0603
s(thi mean t0 3d):primiFx1 0.3145 0.0862 3.65 0.0003
s(days in milk ):multiFx1 2.6245 0.3882 6.76 < 1e-10
s(days in milk ):primiFx1 2.8048 0.5719 4.90 < 1e-06
Variance Component Estimated σ

σα 2.4361
σι 1.0490
σϕ 2.6129
s(thi mean t0 3d):multi 1.5158
s(days in milk ):primi 7.2800
s(days in milk ):multi 8.4933
s(thi mean t0 3d):primi 0.8292
Residual 3.0456

Table D.54: Original Braunvieh: Milk Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.53: Original Braunvieh: Milk Yield - 2011-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.54: Original Braunvieh: Milk Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.10 Original Braunvieh: ECM Yield
D.10.1 Full Period: 1982-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 15.8947 0.4193 37.9121 < 0.0001
parityprimiparous -3.0178 0.0093 -325.6942 < 0.0001
year1983 0.5663 0.2861 1.9794 0.0478
year1984 1.2563 0.3953 3.1781 0.0015
year1985 1.5213 0.4486 3.3913 0.0007
year1986 1.2508 0.4344 2.8793 0.0040
year1987 0.9772 0.4346 2.2487 0.0245
year1988 0.7522 0.4336 1.7348 0.0828
year1989 1.1497 0.4326 2.6574 0.0079
year1990 1.3966 0.4344 3.2152 0.0013
year1991 1.4858 0.4377 3.3948 0.0007
year1992 1.7120 0.4426 3.8681 0.0001
year1993 1.6722 0.4455 3.7537 0.0002
year1994 1.4916 0.4446 3.3549 0.0008
year1995 1.5158 0.4423 3.4268 0.0006
year1996 1.5117 0.4432 3.4106 0.0006
year1997 1.8394 0.4439 4.1439 < 0.0001
year1998 2.3000 0.4511 5.0982 < 0.0001
year1999 2.2123 0.4505 4.9107 < 0.0001
year2000 2.2083 0.4492 4.9165 < 0.0001
year2001 2.8655 0.4508 6.3568 < 0.0001
year2002 2.7206 0.4526 6.0112 < 0.0001
year2003 2.8360 0.4545 6.2393 < 0.0001
year2004 3.5798 0.4559 7.8523 < 0.0001
year2005 3.6846 0.4575 8.0532 < 0.0001
year2006 3.5993 0.4484 8.0271 < 0.0001
year2007 3.4139 0.4409 7.7426 < 0.0001
year2008 3.6631 0.4360 8.4016 < 0.0001
year2009 4.0687 0.4324 9.4088 < 0.0001
year2010 4.0491 0.4566 8.8685 < 0.0001
year2011 4.0704 0.4866 8.3654 < 0.0001
year2012 4.2539 0.4575 9.2983 < 0.0001
year2013 4.0249 0.4567 8.8127 < 0.0001
year2014 4.2470 0.4520 9.3966 < 0.0001
year2015 4.2237 0.4579 9.2233 < 0.0001
year2016 4.5528 0.4511 10.0922 < 0.0001
year2017 4.6712 0.4448 10.5015 < 0.0001
year2018 5.2439 0.4446 11.7950 < 0.0001
year2019 5.3966 0.4489 12.0229 < 0.0001
year2020 5.4795 0.4475 12.2453 < 0.0001
year2021 5.7850 0.4599 12.5794 < 0.0001
year2022 5.5303 0.4515 12.2476 < 0.0001
year2023 5.6858 0.4303 13.2131 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.3581 8.3581 214.1384 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.9115 6.9115 55.6429 < 0.0001
s(days in milk t):paritymultiparous 13.6123 13.6123 99250.0134 < 0.0001
s(days in milk t):parityprimiparous 12.6659 12.6659 6766.6483 < 0.0001

Table D.55: Original Braunvieh: ECM Yield - 1982-2023 - GAMM model summary without random
effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.3216 0.0774 -4.16 < 1e-04
s(thi mean t0 3d):primiFx1 -0.2918 0.1245 -2.34 0.0191
s(days in milk ):multiFx1 0.2352 0.3329 0.71 0.4798
s(days in milk ):primiFx1 1.0344 0.5576 1.86 0.0636
Variance Component Estimated σ

σα 2.2962
σι 0.8772
σϕ 2.4244
s(thi mean t0 3d):multi 1.6803
s(days in milk ):primi 5.8981
s(days in milk ):multi 6.6445
s(thi mean t0 3d):primi 1.4496
Residual 2.9534

Table D.56: Original Braunvieh: ECM Yield - 1982-2023 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.55: Original Braunvieh: ECM Yield - 1982-2023 - Diagnostic Plot



Models 152

THI Effect and Lactation Curve

Figure D.56: Original Braunvieh: ECM Yield - 1982 - 2023 - THI Effect and Lactation Curve
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D.10.2 Split Period: Until 2010 - After 2010
D.10.2.1 Split Period: 1982 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 15.7848 0.3067 51.4584 < 0.0001
parityprimiparous -2.9174 0.0070 -417.3573 < 0.0001
year1983 0.7892 0.1983 3.9793 0.0001
year1984 1.4377 0.2480 5.7973 < 0.0001
year1985 1.6877 0.3220 5.2417 < 0.0001
year1986 1.4483 0.3141 4.6107 < 0.0001
year1987 1.1982 0.3142 3.8135 0.0001
year1988 0.9885 0.3149 3.1391 0.0017
year1989 1.4451 0.3158 4.5766 < 0.0001
year1990 1.6731 0.3146 5.3177 < 0.0001
year1991 1.7756 0.3167 5.6067 < 0.0001
year1992 2.0102 0.3191 6.3000 < 0.0001
year1993 1.9638 0.3171 6.1928 < 0.0001
year1994 1.7777 0.3178 5.5929 < 0.0001
year1995 1.7674 0.3216 5.4948 < 0.0001
year1996 1.8133 0.3296 5.5010 < 0.0001
year1997 2.1509 0.3291 6.5368 < 0.0001
year1998 2.6246 0.3306 7.9400 < 0.0001
year1999 2.6036 0.3326 7.8279 < 0.0001
year2000 2.5430 0.3251 7.8220 < 0.0001
year2001 3.1967 0.3200 9.9888 < 0.0001
year2002 3.1551 0.3198 9.8673 < 0.0001
year2003 3.3240 0.3205 10.3719 < 0.0001
year2004 4.0183 0.3274 12.2746 < 0.0001
year2005 4.0225 0.3287 12.2364 < 0.0001
year2006 3.9963 0.3313 12.0636 < 0.0001
year2007 3.9453 0.3296 11.9687 < 0.0001
year2008 4.2754 0.3341 12.7978 < 0.0001
year2009 4.7774 0.3118 15.3210 < 0.0001
year2010 4.8595 0.3156 15.3998 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.5846 8.5846 309.4526 < 0.0001
s(thi mean t0 3d):parityprimiparous 7.0346 7.0346 59.6072 < 0.0001
s(days in milk t):paritymultiparous 13.7201 13.7201 157593.6335 < 0.0001
s(days in milk t):parityprimiparous 12.8167 12.8167 9483.4131 < 0.0001

Table D.57: Original Braunvieh: ECM Yield - 1982-2010 - GAMM model summary without random
effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.2853 0.0617 4.63 < 1e-05
s(thi mean t0 3d):primiFx1 0.1390 0.1034 1.34 0.1788
s(days in milk ):multiFx1 -0.8167 0.2614 -3.12 0.0018
s(days in milk ):primiFx1 0.4526 0.4988 0.91 0.3642
Variance Component Estimated σ

σα 2.1036
σι 0.8472
σϕ 2.3969
s(thi mean t0 3d):multi 1.7271
s(days in milk ):primi 5.5845
s(days in milk ):multi 6.1963
s(thi mean t0 3d):primi 1.3102
Residual 2.7254

Table D.58: Original Braunvieh: ECM Yield - 1982-2010 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.57: Original Braunvieh: ECM Yield - 1982-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.58: Original Braunvieh: ECM Yield - 1982 - 2010 - THI Effect and Lactation Curve
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D.10.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 19.5455 0.1369 142.7818 < 0.0001
parityprimiparous -3.1985 0.0140 -229.2422 < 0.0001
year2012 0.2379 0.1405 1.6940 0.0903
year2013 0.0226 0.1452 0.1560 0.8760
year2014 0.3542 0.1507 2.3500 0.0188
year2015 0.3058 0.1471 2.0794 0.0376
year2016 0.5225 0.1557 3.3550 0.0008
year2017 0.6787 0.1586 4.2804 < 0.0001
year2018 1.3125 0.1506 8.7128 < 0.0001
year2019 1.4008 0.1414 9.9084 < 0.0001
year2020 1.5607 0.1607 9.7145 < 0.0001
year2021 1.7424 0.1523 11.4371 < 0.0001
year2022 1.3971 0.1530 9.1313 < 0.0001
year2023 1.5928 0.1365 11.6652 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 7.9847 7.9847 155.1733 < 0.0001
s(thi mean t0 3d):parityprimiparous 6.2505 6.2505 120.1621 < 0.0001
s(days in milk t):paritymultiparous 13.5291 13.5291 75214.1566 < 0.0001
s(days in milk t):parityprimiparous 12.7235 12.7235 6571.4484 < 0.0001

Table D.59: Original Braunvieh: ECM Yield - 2011-2023 - GAMM model summary without random
effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.2387 0.0884 2.70 0.0069
s(thi mean t0 3d):primiFx1 0.4781 0.1054 4.54 < 1e-05
s(days in milk ):multiFx1 0.1442 0.3475 0.41 0.6781
s(days in milk ):primiFx1 1.4020 0.5138 2.73 0.0064
Variance Component Estimated σ

σα 2.4364
σι 1.1982
σϕ 2.9291
s(thi mean t0 3d):multi 1.5377
s(days in milk ):primi 5.7883
s(days in milk ):multi 6.5645
s(thi mean t0 3d):primi 1.0934
Residual 3.4295

Table D.60: Original Braunvieh: ECM Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and
Random Effects.

Model Diagnostics

Figure D.59: Original Braunvieh: ECM Yield - 2011 - 2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.60: Original Braunvieh: ECM Yield - 2011 - 2023 - THI Effect and Lactation Curve
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D.11 Jersey: Milk Yield
D.11.1 Full Period: 1998-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 13.7621 0.7123 19.3200 < 0.0001
parityprimiparous -2.0196 0.0125 -162.2099 < 0.0001
year1999 -0.5788 0.7821 -0.7401 0.4592
year2000 0.1706 0.7908 0.2158 0.8292
year2001 0.6872 0.7611 0.9029 0.3666
year2002 1.1345 0.7621 1.4886 0.1366
year2003 1.6274 0.7688 2.1169 0.0343
year2004 2.1381 0.7407 2.8868 0.0039
year2005 2.3294 0.7283 3.1986 0.0014
year2006 2.6162 0.7276 3.5957 0.0003
year2007 2.4384 0.7239 3.3683 0.0008
year2008 2.6780 0.7231 3.7037 0.0002
year2009 2.9302 0.7281 4.0244 0.0001
year2010 3.1502 0.7338 4.2930 < 0.0001
year2011 3.3587 0.7275 4.6169 < 0.0001
year2012 3.6206 0.7210 5.0218 < 0.0001
year2013 3.6943 0.7185 5.1417 < 0.0001
year2014 4.3000 0.7222 5.9540 < 0.0001
year2015 4.4102 0.7209 6.1173 < 0.0001
year2016 4.6309 0.7199 6.4324 < 0.0001
year2017 5.0141 0.7237 6.9289 < 0.0001
year2018 5.3353 0.7225 7.3848 < 0.0001
year2019 5.6806 0.7183 7.9088 < 0.0001
year2020 5.9019 0.7223 8.1711 < 0.0001
year2021 5.9578 0.7225 8.2465 < 0.0001
year2022 5.9243 0.7222 8.2033 < 0.0001
year2023 6.0294 0.7156 8.4255 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.0636 8.0636 1133.7258 < 0.0001
s(thi mean t0 3d):parityprimiparous 8.5711 8.5711 44.5719 < 0.0001
s(days in milk t):paritymultiparous 14.5547 14.5547 57761.6129 < 0.0001
s(days in milk t):parityprimiparous 13.8436 13.8436 9080.5596 < 0.0001

Table D.61: Jersey: Milk Yield - 1998-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.3076 0.0866 3.55 0.0004
s(thi mean t0 3d):primiFx1 0.1474 0.1459 1.01 0.3124
s(days in milk ):multiFx1 4.9106 0.3978 12.34 < 1e-34
s(days in milk ):primiFx1 4.1249 0.5323 7.75 < 1e-14
Variance Component Estimated σ

σα 2.3991
σι 0.9500
σϕ 2.9764
s(thi mean t0 3d):multi 1.5575
s(days in milk ):primi 6.9995
s(days in milk ):multi 8.4095
s(thi mean t0 3d):primi 3.9762
Residual 2.9355

Table D.62: Jersey: Milk Yield - 1998-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.61: Jersey: Milk Yield - 1998-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.62: Jersey: Milk Yield - 1998 - 2023 - THI Effect and Lactation Curve
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D.11.2 Split Period: Until 2010 - After 2010
D.11.2.1 Split Period: 1998 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 13.8464 0.6158 22.4846 < 0.0001
parityprimiparous -1.5962 0.0195 -81.7385 < 0.0001
year1999 -0.4670 0.6855 -0.6812 0.4958
year2000 0.2987 0.6751 0.4424 0.6582
year2001 0.9551 0.6524 1.4639 0.1432
year2002 1.5417 0.6531 2.3604 0.0183
year2003 2.0455 0.6455 3.1688 0.0015
year2004 2.6115 0.6385 4.0902 < 0.0001
year2005 2.8675 0.6331 4.5293 < 0.0001
year2006 3.2272 0.6297 5.1248 < 0.0001
year2007 3.1239 0.6291 4.9658 < 0.0001
year2008 3.4796 0.6295 5.5276 < 0.0001
year2009 3.8885 0.6287 6.1845 < 0.0001
year2010 4.2474 0.6261 6.7842 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 7.4687 7.4687 367.5611 < 0.0001
s(thi mean t0 3d):parityprimiparous 5.9291 5.9291 31.4722 < 0.0001
s(days in milk t):paritymultiparous 13.9600 13.9600 17839.8816 < 0.0001
s(days in milk t):parityprimiparous 12.8822 12.8822 3856.3426 < 0.0001

Table D.63: Jersey: Milk Yield - 1998-2010 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.3833 0.1433 2.68 0.0075
s(thi mean t0 3d):primiFx1 0.0868 0.1631 0.53 0.5943
s(days in milk ):multiFx1 4.2188 0.6749 6.25 < 1e-09
s(days in milk ):primiFx1 3.1564 0.7455 4.23 < 1e-04
Variance Component Estimated σ

σα 0.9524
σι 2.2355
σϕ 2.6202
s(thi mean t0 3d):multi 1.8172
s(days in milk ):primi 7.1500
s(days in milk ):multi 9.1468
s(thi mean t0 3d):primi 1.3871
Residual 2.6539

Table D.64: Jersey: Milk Yield - 1998-2010 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.63: Jersey: Milk Yield - 1998-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.64: Jersey: Milk Yield - 1998 - 2010 - THI Effect and Lactation Curve
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D.11.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 16.9374 0.1584 106.9310 < 0.0001
parityprimiparous -2.0885 0.0163 -128.1973 < 0.0001
year2012 0.2060 0.1796 1.1471 0.2513
year2013 0.2842 0.2108 1.3481 0.1776
year2014 0.8749 0.2054 4.2601 < 0.0001
year2015 0.9939 0.2045 4.8606 < 0.0001
year2016 1.2244 0.1932 6.3379 < 0.0001
year2017 1.6126 0.1992 8.0952 < 0.0001
year2018 1.9356 0.1895 10.2118 < 0.0001
year2019 2.2870 0.1840 12.4266 < 0.0001
year2020 2.5084 0.2001 12.5361 < 0.0001
year2021 2.5636 0.1994 12.8587 < 0.0001
year2022 2.5237 0.2008 12.5669 < 0.0001
year2023 2.6125 0.1791 14.5866 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 8.1013 8.1013 856.5674 < 0.0001
s(thi mean t0 3d):parityprimiparous 5.9065 5.9065 53.5215 < 0.0001
s(days in milk t):paritymultiparous 14.5129 14.5129 42118.2414 < 0.0001
s(days in milk t):parityprimiparous 13.6452 13.6452 5835.7977 < 0.0001

Table D.65: Jersey: Milk Yield - 2011-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.3112 0.1041 -2.99 0.0028
s(thi mean t0 3d):primiFx1 -0.1658 0.1121 -1.48 0.1391
s(days in milk ):multiFx1 4.7696 0.4524 10.54 < 1e-25
s(days in milk ):primiFx1 3.9223 0.6090 6.44 < 1e-09
Variance Component Estimated σ

σα 2.3907
σι 0.9756
σϕ 3.1309
s(thi mean t0 3d):multi 1.9309
s(days in milk ):primi 7.4722
s(days in milk ):multi 9.2408
s(thi mean t0 3d):primi 1.0857
Residual 2.9808

Table D.66: Jersey: Milk Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.65: Jersey: Milk Yield - 2011-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.66: Jersey: Milk Yield - 2010 - 2023 - THI Effect and Lactation Curve
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D.12 Jersey: ECM Yield
D.12.1 Full Period: 1998-2023
Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 18.5383 0.8722 21.2546 < 0.0001
parityprimiparous -3.1781 0.0163 -195.4078 < 0.0001
year1999 -0.8262 0.9761 -0.8464 0.3973
year2000 0.0183 0.9690 0.0189 0.9849
year2001 0.7161 0.9324 0.7680 0.4425
year2002 1.1984 0.9342 1.2828 0.1996
year2003 1.6896 0.9407 1.7962 0.0725
year2004 2.3125 0.9084 2.5456 0.0109
year2005 2.6139 0.8927 2.9282 0.0034
year2006 2.7400 0.8919 3.0722 0.0021
year2007 2.5140 0.8873 2.8333 0.0046
year2008 2.9241 0.8861 3.2999 0.0010
year2009 3.0485 0.8928 3.4146 0.0006
year2010 3.2974 0.8999 3.6642 0.0002
year2011 3.5419 0.8911 3.9750 0.0001
year2012 3.8750 0.8833 4.3869 < 0.0001
year2013 3.8343 0.8801 4.3567 < 0.0001
year2014 4.5334 0.8848 5.1234 < 0.0001
year2015 4.6029 0.8831 5.2123 < 0.0001
year2016 4.9300 0.8818 5.5910 < 0.0001
year2017 5.2786 0.8865 5.9547 < 0.0001
year2018 5.6528 0.8850 6.3875 < 0.0001
year2019 6.0667 0.8797 6.8962 < 0.0001
year2020 6.3867 0.8849 7.2176 < 0.0001
year2021 6.4376 0.8848 7.2758 < 0.0001
year2022 6.1875 0.8845 6.9955 < 0.0001
year2023 6.4372 0.8763 7.3457 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 7.9519 7.9519 114.8914 < 0.0001
s(thi mean t0 3d):parityprimiparous 5.6644 5.6644 146.4984 < 0.0001
s(days in milk t):paritymultiparous 13.5716 13.5716 34840.0802 < 0.0001
s(days in milk t):parityprimiparous 13.0755 13.0755 3646.1487 < 0.0001

Table D.67: Jersey: ECM Yield - 1998-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.622797 0.111537 5.58 < 1e-07
s(thi mean t0 3d):primiFx1 0.472103 0.115708 4.08 < 1e-04
s(days in milk ):multiFx1 3.87517 0.426994 9.08 < 1e-18
s(days in milk ):primiFx1 3.47422 0.603778 5.75 < 1e-08
Variance Component Estimated σ

σα 2.63725
σι 1.11866
σϕ 3.68271
s(thi mean t0 3d):multi 1.89398
s(days in milk ):primi 8.30084
s(days in milk ):multi 8.67344
s(thi mean t0 3d):primi 1.04356
Residual 3.85243

Table D.68: Jersey: ECM Yield - 1998-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.67: Jersey: ECM Yield - 1998-2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.68: Jersey: ECM Yield - 1998 - 2023 - THI Effect and Lactation Curve
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D.12.2 Split Period: Until 2010 - After 2010
D.12.2.1 Split Period: 1998 - 2010

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 18.2669 0.7578 24.1067 < 0.0001
parityprimiparous -2.5939 0.0256 -101.3950 < 0.0001
year1999 -0.6468 0.8527 -0.7586 0.4481
year2000 0.2027 0.8311 0.2439 0.8073
year2001 1.1265 0.8029 1.4030 0.1606
year2002 1.8105 0.8042 2.2513 0.0244
year2003 2.3125 0.7949 2.9093 0.0036
year2004 3.0193 0.7861 3.8407 0.0001
year2005 3.4202 0.7798 4.3858 < 0.0001
year2006 3.6439 0.7756 4.6983 < 0.0001
year2007 3.5288 0.7748 4.5543 < 0.0001
year2008 4.0872 0.7753 5.2718 < 0.0001
year2009 4.4202 0.7742 5.7095 < 0.0001
year2010 4.8513 0.7709 6.2932 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 6.7718 6.7718 42.2573 < 0.0001
s(thi mean t0 3d):parityprimiparous 4.9785 4.9785 51.3939 < 0.0001
s(days in milk t):paritymultiparous 12.8146 12.8146 11531.2301 < 0.0001
s(days in milk t):parityprimiparous 11.8206 11.8206 1844.1937 < 0.0001

Table D.69: Jersey: ECM Yield - 1998-2010 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 0.556587 0.166586 3.34 0.0008
s(thi mean t0 3d):primiFx1 0.399362 0.171063 2.33 0.0196
s(days in milk ):multiFx1 3.05618 0.696401 4.39 < 1e-04
s(days in milk ):primiFx1 2.77329 0.788521 3.52 0.0004
Variance Component Estimated σ

σα 2.53036
σι 1.11190
σϕ 3.27697
s(thi mean t0 3d):multi 1.72458
s(days in milk ):primi 6.95605
s(days in milk ):multi 8.30984
s(thi mean t0 3d):primi 1.22781
Residual 3.49403

Table D.70: Jersey: ECM Yield - 1998-2010 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.69: Jersey: ECM Yield - 1998-2010 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.70: Jersey: ECM Yield - 1998 - 2010 - THI Effect and Lactation Curve
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D.12.2.2 Split Period: 2010 - 2023

Model Summary

A. parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 21.9720 0.1946 112.8937 < 0.0001
parityprimiparous -3.2946 0.0213 -154.9018 < 0.0001
year2012 0.2540 0.2259 1.1242 0.2609
year2013 0.2118 0.2609 0.8118 0.4169
year2014 0.8891 0.2536 3.5061 0.0005
year2015 0.9643 0.2528 3.8138 0.0001
year2016 1.2941 0.2389 5.4180 < 0.0001
year2017 1.6423 0.2463 6.6682 < 0.0001
year2018 2.0143 0.2347 8.5841 < 0.0001
year2019 2.4266 0.2273 10.6763 < 0.0001
year2020 2.7412 0.2476 11.0717 < 0.0001
year2021 2.7795 0.2468 11.2643 < 0.0001
year2022 2.5202 0.2486 10.1379 < 0.0001
year2023 2.7349 0.2213 12.3600 < 0.0001
B. smooth terms edf Ref.df F-value p-value

s(thi mean t0 3d):paritymultiparous 7.8183 7.8183 101.7990 < 0.0001
s(thi mean t0 3d):parityprimiparous 5.9748 5.9748 101.4406 < 0.0001
s(days in milk t):paritymultiparous 13.4448 13.4448 25136.3559 < 0.0001
s(days in milk t):parityprimiparous 12.6212 12.6212 2246.7077 < 0.0001

Table D.71: Jersey: ECM Yield - 2011-2023 - GAMM model summary without random effect terms.
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Smooth Term Fixed Effect Est. SE z p

s(thi mean t0 3d):multiFx1 -0.690297 0.130414 -5.29 < 1e-06
s(thi mean t0 3d):primiFx1 -0.514106 0.148913 -3.45 0.0006
s(days in milk ):multiFx1 3.86596 0.476176 8.12 < 1e-15
s(days in milk ):primiFx1 3.43391 0.653845 5.25 < 1e-06
Variance Component Estimated σ

σα 2.60104
σι 1.16946
σϕ 3.90069
s(thi mean t0 3d):multi 2.10256
s(days in milk ):primi 7.40217
s(days in milk ):multi 8.58295
s(thi mean t0 3d):primi 1.46353
Residual 3.91111

Table D.72: Jersey: ECM Yield - 2011-2023 - Mixed Model Summary - Smooth Terms and Random
Effects.

Model Diagnostics

Figure D.71: Jersey: ECM Yield - 2011 - 2023 - Diagnostic Plot
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THI Effect and Lactation Curve

Figure D.72: Jersey: ECM Yield - 2011 - 2023 - THI Effect and Lactation Curve
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