





# Modelling the Effect of Heat Stress on the Performance of Swiss Dairy Cows

# **A Big Data Statistical Analysis**

**Arno Schneuwly** 

**Poll**: Which is the most heat-resilient breed in terms of ECM yield?



#### For which breed is the THI where the ECM yield starts to drop the highest?

#### **ETH** zürich

# **Dairy Farming and Climate in Switzerland**

Im Tal haben die Kühe Hunger, auf der Alp haben sie Durst: Wie die Hitze das Vieh trifft

Das Wasser wird knapp. Das trifft die Bauernbetriebe besonders hart. Jetzt haben einige Kantone mehr Flächen freigegeben und wollen so dem Futtermangel vorbeugen. Aber nicht überall ist das Futter das Problem.

**ETH** zürich



NZZ (2022)



Agroscope (2023)



#### Heat stress appears to be a problem. How big is it? Today, we try to quantify.



Milchbauernhof, Instagram (2022)



Zu hohe Temperaturen für Kühe Deshalb leiden Kühe unter Hitzestress

Kühe mögen es kühl und leiden im Sommer deshalb unter Hitzestress. Woran liegt das? Eine Studie bringt neue Erkenntnisse.

Samstag, 22.07.2023, 14:46 Uhr

Auch jetzt im Sommer sind die Rinder und Kühe von Bauer Stefan Käser im



# **Animal Physiology 101 - What is Heat Stress?**



#### THI is the agronomic metric for heat stress.

# **THI over Time in Switzerland**



#### High-THI exposure is rising. The effect of heat-incurred dairy performance losses is unknown for CH.

#### **ETH** zürich

۔ بن<sup>ر</sup> کی

# Heat Stress on Dairy Cow Performance Across Breeds

| Study                | Breeds | Records | Farms   | Cows    | Time        | Location | Model        |
|----------------------|--------|---------|---------|---------|-------------|----------|--------------|
| Bryant et al (2007)  | 3      | ~ 65 K  | ~ 0.5 K | > 19 K  | 1990 – 2002 | **       | Mixed        |
| Gantner et al (2017) | 2      | ~ 2.3 M | ~ 1.5 K | > 156 K | 2005 – 2012 |          | Mixed        |
| Ahmed et al (2022)   | 4      | ~ 5 M   | ~ 1.4 K | ?       | 2016 – 2019 |          | Linear / GAM |
|                      |        |         |         |         |             |          |              |
| Our work             | 6      | > 130 M | ~ 46 K  | ~ 4.2 M | 1982 – 2023 | •        | GAM          |

Heat stress studies of non-experimental production systems across breeds are very scarce.

Can we and at which THI value(s) do we observe a change (increase / decrease) in dairy performance variables for the different dairy cow breeds in Switzerland?



# **Popular Cow Breeds in Switzerland – 2023 Performance**



| Purpose       | Milk                 | Milk & Meat          | Milk                 | Milk                 | Milk & Meat          | Milk & Meat          |
|---------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Milk [kg/day] | 23.04 (±7.55)        | <b>19.33</b> (±6.48) | <b>27.20</b> (±8.58) | <b>18.88</b> (±6.10) | <b>19.39</b> (±6.50) | <b>22.45</b> (±7.51) |
| Protein [%]   | 3.56 (±0.43)         | 3.42 (±0.42)         | 3.42 (±0.42)         | 3.97 (±0.51)         | 3.44 (±0.37)         | 3.46 (±0.42)         |
| Fat [%]       | 4.13 (±0.61)         | 4.01 (±0.57)         | 4.22 (±0.67)         | 5.30 (±0.94)         | 4.04 (±0.60)         | 4.27 (±0.69)         |
| ECM [kg/day]  | <b>25.56</b> (±8.02) | <b>20.95</b> (±6.77) | <b>30.13</b> (±8.90) | <b>24.17</b> (±7.15) | <b>21.14</b> (±6.89) | <b>25.02</b> (±7.88) |

#### Breeding commonly optimizes for performance. Heat resilience is not explicitly included.

### **Our Dataset Statistics**

|           | Brown Swiss | Original<br>Braunvieh | Holstein    | Jersey      | Simmental   | Swiss<br>Fleckvieh |
|-----------|-------------|-----------------------|-------------|-------------|-------------|--------------------|
|           |             |                       |             |             |             |                    |
|           | $\triangle$ | +                     | 0           |             | $\diamond$  | ×                  |
| # Samples | 56 M        | 5 M                   | 28 M        | 700 K       | 9 M         | 30 M               |
| # Farms   | 26 K        | 18 K                  | 25 K        | 4 K         | 19 K        | 27 K               |
| # Animals | 1.7 M       | 150 K                 | 900 K       | 24 K        | 300 K       | 1 M                |
| Timespan  | 1982 - 2023 | 1982 - 2023           | 1985 - 2023 | 1998 - 2023 | 1984 - 2023 | 1984 - 2023        |

#### This is real-world data collected in commercial farming over 40 years. No experimental design.

### **Structure of Our Data – Sparsity & Dynamics**



Sparse and hierarchical data. Farms enter and exit. Animals enter, exit and change farms. Irregular sampling frequencies.

#### **Structure of Our Data – Time & Seasonality**



Breeding Progress. Policy Changes. Sampling Patterns. Annual Seasonality.

#### **ETH** zürich

¥

# **Empirical Strategy**

| Variable<br>of Interest | = Weather      | + Controls +                                  | Unobserved<br>Heterogeneity | + Error |
|-------------------------|----------------|-----------------------------------------------|-----------------------------|---------|
| Milk Yield<br>ECM Yield | 3 Day Mean THI | Days in Milk (DIM)<br>Parity<br>Time & Season | Animals<br>Farms            |         |
|                         | non-linear     | linear<br>&<br>non-linear                     | random effects              |         |
|                         | _              | Ŷ                                             |                             |         |

Generalized Additive Models – GAMs

#### Model the non-linearities and derive the threshold values with numerical methods.

# **Single Breed Model**

| $Y_{ijkt} = \beta_0$                                     |                                                  | Intercept   |                                                    |
|----------------------------------------------------------|--------------------------------------------------|-------------|----------------------------------------------------|
| $+f_{1,1}(\mathrm{THI}_{kt})$ .                          | $\mathbb{I}(\mathrm{Primiparous}_i)$             | Weather     | $f_1(\text{THI}_{kt})$ is a smooth function of THI |
| $+ f_{1,2}(\mathrm{THI}_{kt}) \cdot$                     | $(1 - \mathbb{I}(\operatorname{Primiparous}_i))$ | weather     | on farm $k$ at time $t$                            |
| $+ f_{2,1}(\mathrm{DIM}_{it}) \cdot$                     | $\mathbb{I}(\mathrm{Primiparous}_i)$             |             | $f_2(\text{THI}_{it})$ is a smooth function of DIM |
| $+ f_{2,2}(\mathrm{DIM}_{it}) \cdot$                     | $(1 - \mathbb{I}(\mathrm{Primiparous}_i))$       | Controls    | of sample $i$ at time $t$                          |
| $+ \beta_1 \cdot \mathbb{I}(\operatorname{Primip}$       | $\operatorname{arous}_i)$                        |             | primiparous vs multiparous                         |
| $+\sum_{m=1}^{M-1}\beta_{2m}\cdot\mathbb{I}(\mathbf{Y})$ | $\operatorname{Year}_t = m$                      | Time        | dummy for each year                                |
| $\frac{m=1}{u_{kt}}$                                     |                                                  | Seasonality | RE of zip code of farm $k$ and month of $t$        |
| $+v_k$                                                   |                                                  | Farms       | RE of farm $k$                                     |
| $+w_i$                                                   |                                                  | Animals     | RE of for animal $i$                               |
| $+ \epsilon_{ijkt}$                                      |                                                  | Error       |                                                    |

#### GAMs are the state-of-the-art statistical framework to fit our model.

# An Unforeseen Challenge... The Sparsity of our Data...



We extended libraries to accommodate GAMs with tens of thousands of factor levels.

**ETH** zürich

01010 10101 01010

# Results: Milk Yield - THI Effect & Intercepts (Mean + Year 2023)



**ETH** zürich

μηυ

# Results: ECM Yield - THI Effect & Intercepts (Mean + Year 2023)



**ETH** zürich

μηυ

### Discussion

|             |            | THI Thre | sholds N    | lilk Yield | [kg/day] |       |
|-------------|------------|----------|-------------|------------|----------|-------|
|             | НО         | SF       | BS          | SI         | OB       | JE    |
| Multiparous | 54.71      | 54.38    | 53.60       | 55.28      | 54.60    | 58.12 |
| Primiparous | 51.90      | 53.35    | 48.04       | 50.99      | 51.20    | 56.20 |
|             | $\bigcirc$ | $\times$ | $\triangle$ | $\diamond$ | +        |       |

Low THI Thresholds: not unseen, but not common - Ahmed et al (2022), Hill et al (2015), Vinet et al (2023)

Component drop: Bryant et al (2007), Chen et al (2024)

Lower thresholds for primiparous: similar findings by Maggiolino et al (2022), J. Castro-Montoy (2019) contradicts Bernabucci et al (2014), West (2004), Aguilar et al (2010)

#### Early component drop weighs out differences in volume drops across breeds!

### **Limitations & Potential Next Steps**

#### **6 Single Breed Models**

- Computational limits  $\rightarrow$  multi-breed model
- Subsampling strategies
- Stacking / ensemble techniques

Limited interpretability of p-values (non-experimental design) **p**\*\*\*

#### Spatial Autocorrelation & Confounding & Seasonality

- Better modelling than with the zip X month RE -> longitude, latitude, day of year smooths
- Spatial+ Dupont et al (2020)
- Model selection

Farm as fixed effects (MixedModels.jl such an experiment – sparse FE matrix support)

Other weather effects: precipitation, sunshine duration, radiation, exact lactation numbers

Other performance variables: Somatic Cell Count, lactose, (rotein, fat separately - included in ECM)



#### Contributions

Agronomy / Animal Science

performance critical THI thresholds for 6 breeds



non-linear marginal effects of THI for 6 breeds

unprecedented granularity and scale of data, even if we subsampled

Statistics / Computational Science  $\begin{array}{c} -x \\ += \end{array}$ 

Identified a **bottleneck** in MGCV for random effects with a high number of factor levels

Fixed gamm4 bugs, introduced an improved version gamm4b

**gammJ**: modified gamm4 with a bridge to MixedModels.jl to support GAMs

Poll: Which is the most heat-resilient breed in terms of ECM yield?



The threshold differences across breeds are minimal for ECM yield! Similar resilience for all breeds.



000

# Appendix





# ECM Full Time Range



# **Results**: ECM Yield – Marginal Effects for Primiparous Cows



# **Results**: ECM Yield – Marginal Effects for Multiparous Cows



# Milk Yield Full Time Range



### **Results**: Milk Yield – Marginal Effects for Primiparous Cows



#### **Results**: Milk Yield – Marginal Effects for Multiparous Cows



#### Milk Yield Before & After 2010



# Results: Milk Yield – Marginal Effects for Primiparous Cows before 2010



## **Results**: Milk Yield – Marginal Effects for Primiparous Cows after 2010



#### ECM Yield Before & After 2010



# **Results**: ECM Yield – Marginal Effects for Primiparous Cows before 2010



# Results: ECM Yield – Marginal Effects for Primiparous Cows after 2010



# Marginal Effects – Full Period



#### Marginal Effects



### Marginal Effects



Marginal THI Effects- Multiparous Breeds

# Sample Distribution by Breed ( > 1000 samples)



 $10^{0}$   $10^{1}$   $10^{2}$   $10^{3}$   $10^{4}$   $10^{5}$ Number of Milk Samples (Log Scale)

#### **Multi-Stage Data Cleaning**

**IQA Filtering** – Drop unrealistic values

E.g. 90 kg milk, 90% Protein

Only take samples where all target variables of interest are simultaneously available

Drop Research Farms, Farm Schools, Breeding Associations, Research Organizations Milk, Protein, Fat

ETH, Agroscope, Qualitas

Only Farms in Switzerland – Drop foreign farms

Keep cows with international ID

Conservative data cleaning approach.

### **Agricultural Policies in Switzerland**

| Agricultural<br>Policies | Enactment |
|--------------------------|-----------|
| RAUS                     | 1993      |
| BTS                      | 1996      |
| Milk price supplement    | 1999      |
| Milk quota abolition     | 2009      |
| Grassland-based feeding  | 2014      |
| Commercial milk          | 2019      |
| Pasture payment          | 2023      |